File size: 6,417 Bytes
897b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from nusacrowd.utils import schemas
from nusacrowd.utils.common_parser import load_conll_data

from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks

_CITATION = """\
@inproceedings{koto-etal-2020-indolem,
    title = "{I}ndo{LEM} and {I}ndo{BERT}: A Benchmark Dataset and Pre-trained Language Model for {I}ndonesian {NLP}",
    author = "Koto, Fajri  and
      Rahimi, Afshin  and
      Lau, Jey Han  and
      Baldwin, Timothy",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2020.coling-main.66",
    doi = "10.18653/v1/2020.coling-main.66",
    pages = "757--770"
}
@phdthesis{fachri2014pengenalan,
  title     = {Pengenalan Entitas Bernama Pada Teks Bahasa Indonesia Menggunakan Hidden Markov Model},
  author    = {FACHRI, MUHAMMAD},
  year      = {2014},
  school    = {Universitas Gadjah Mada}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indolem_ner_ugm"

_DESCRIPTION = """\
NER UGM is a Named Entity Recognition dataset that comprises 2,343 sentences from news articles, and was constructed at the University of Gajah Mada based on five named entity classes: person, organization, location, time, and quantity.
"""

_HOMEPAGE = "https://indolem.github.io/"

_LICENSE = "Creative Commons Attribution 4.0"

_URLS = {
    _DATASETNAME: {
        "train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerugm/train.0{fold_number}.tsv",
        "validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerugm/dev.0{fold_number}.tsv",
        "test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerugm/test.0{fold_number}.tsv"
    }
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]

_SOURCE_VERSION = "1.0.0"

_NUSANTARA_VERSION = "1.0.0"

class IndolemNERUGM(datasets.GeneratorBasedBuilder):
    """NER UGM comprises 2,343 sentences from news articles, and was constructed at the University of Gajah Mada based on five named entity classes: person, organization, location, time, and quantity; and based on 5-fold cross validation"""

    label_classes = ["B-PERSON", "B-LOCATION", "B-ORGANIZATION", "B-TIME", "B-QUANTITY", "I-PERSON", "I-LOCATION", "I-ORGANIZATION", "I-TIME", "I-QUANTITY", "O"]

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)

    BUILDER_CONFIGS = ( 
    [
        NusantaraConfig(
            name="indolem_ner_ugm_fold{fold_number}_source".format(fold_number=i),
            version=_SOURCE_VERSION,
            description="indolem_ner_ugm source schema",
            schema="source",
            subset_id="indolem_ner_ugm_fold{fold_number}".format(fold_number=i),
        ) for i in range(5)
    ] 
    +   [
            NusantaraConfig(
                name="indolem_ner_ugm_fold{fold_number}_nusantara_seq_label".format(fold_number=i),
                version=_NUSANTARA_VERSION,
                description="indolem_ner_ugm Nusantara schema",
                schema="nusantara_seq_label",
                subset_id="indolem_ner_ugm_fold{fold_number}".format(fold_number=i),
            ) for i in range(5)
        ]
    )

    DEFAULT_CONFIG_NAME = "indolem_ner_ugm_fold0_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "index": datasets.Value("string"),
                    "tokens": [datasets.Value("string")],
                    "tags": [datasets.Value("string")]
                }
            )

        elif self.config.schema == "nusantara_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _get_fold_index(self):
        try:
            subset_id = self.config.subset_id
            idx_fold = subset_id.index("_fold")
            file_id = subset_id[(idx_fold + 5):]
            return int(file_id)
        except:
            return 0

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        idx = self._get_fold_index()

        urls = _URLS[_DATASETNAME]

        for key in urls:
            urls[key] = urls[key].format(fold_number=idx+1)

        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for i, row in enumerate(conll_dataset):
                ex = {
                    "index": str(i),
                    "tokens": row["sentence"],
                    "tags": row["label"]
                }
                yield i, ex
        elif self.config.schema == "nusantara_seq_label":
            for i, row in enumerate(conll_dataset):
                ex = {
                    "id": str(i),
                    "tokens": row["sentence"],
                    "labels": row["label"]
                }
                yield i, ex