|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{koto-etal-2020-indolem, |
|
title = "{I}ndo{LEM} and {I}ndo{BERT}: A Benchmark Dataset and Pre-trained Language Model for {I}ndonesian {NLP}", |
|
author = "Koto, Fajri and |
|
Rahimi, Afshin and |
|
Lau, Jey Han and |
|
Baldwin, Timothy", |
|
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", |
|
month = dec, |
|
year = "2020", |
|
address = "Barcelona, Spain (Online)", |
|
publisher = "International Committee on Computational Linguistics", |
|
url = "https://aclanthology.org/2020.coling-main.66", |
|
doi = "10.18653/v1/2020.coling-main.66", |
|
pages = "757--770" |
|
} |
|
@phdthesis{fachri2014pengenalan, |
|
title = {Pengenalan Entitas Bernama Pada Teks Bahasa Indonesia Menggunakan Hidden Markov Model}, |
|
author = {FACHRI, MUHAMMAD}, |
|
year = {2014}, |
|
school = {Universitas Gadjah Mada} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indolem_ner_ugm" |
|
|
|
_DESCRIPTION = """\ |
|
NER UGM is a Named Entity Recognition dataset that comprises 2,343 sentences from news articles, and was constructed at the University of Gajah Mada based on five named entity classes: person, organization, location, time, and quantity. |
|
""" |
|
|
|
_HOMEPAGE = "https://indolem.github.io/" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerugm/train.0{fold_number}.tsv", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerugm/dev.0{fold_number}.tsv", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerugm/test.0{fold_number}.tsv" |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
class IndolemNERUGM(datasets.GeneratorBasedBuilder): |
|
"""NER UGM comprises 2,343 sentences from news articles, and was constructed at the University of Gajah Mada based on five named entity classes: person, organization, location, time, and quantity; and based on 5-fold cross validation""" |
|
|
|
label_classes = ["B-PERSON", "B-LOCATION", "B-ORGANIZATION", "B-TIME", "B-QUANTITY", "I-PERSON", "I-LOCATION", "I-ORGANIZATION", "I-TIME", "I-QUANTITY", "O"] |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
SEACrowdConfig( |
|
name="indolem_ner_ugm_fold{fold_number}_source".format(fold_number=i), |
|
version=_SOURCE_VERSION, |
|
description="indolem_ner_ugm source schema", |
|
schema="source", |
|
subset_id="indolem_ner_ugm_fold{fold_number}".format(fold_number=i), |
|
) for i in range(5) |
|
] |
|
+ [ |
|
SEACrowdConfig( |
|
name="indolem_ner_ugm_fold{fold_number}_seacrowd_seq_label".format(fold_number=i), |
|
version=_SEACROWD_VERSION, |
|
description="indolem_ner_ugm Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="indolem_ner_ugm_fold{fold_number}".format(fold_number=i), |
|
) for i in range(5) |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "indolem_ner_ugm_fold0_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"tags": [datasets.Value("string")] |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _get_fold_index(self): |
|
try: |
|
subset_id = self.config.subset_id |
|
idx_fold = subset_id.index("_fold") |
|
file_id = subset_id[(idx_fold + 5):] |
|
return int(file_id) |
|
except: |
|
return 0 |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
idx = self._get_fold_index() |
|
|
|
urls = _URLS[_DATASETNAME] |
|
|
|
for key in urls: |
|
urls[key] = urls[key].format(fold_number=idx+1) |
|
|
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
conll_dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for i, row in enumerate(conll_dataset): |
|
ex = { |
|
"index": str(i), |
|
"tokens": row["sentence"], |
|
"tags": row["label"] |
|
} |
|
yield i, ex |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for i, row in enumerate(conll_dataset): |
|
ex = { |
|
"id": str(i), |
|
"tokens": row["sentence"], |
|
"labels": row["label"] |
|
} |
|
yield i, ex |
|
|