Datasets:

Languages:
Indonesian
ArXiv:
File size: 5,899 Bytes
43be7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from pathlib import Path
from typing import Dict, List, Tuple

import json
import datasets
from nusacrowd.utils import schemas

from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks

_CITATION = """\
@article{DBLP:journals/corr/abs-2011-00677,
  author    = {Fajri Koto and
               Afshin Rahimi and
               Jey Han Lau and
               Timothy Baldwin},
  title     = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language
               Model for Indonesian {NLP}},
  journal   = {CoRR},
  volume    = {abs/2011.00677},
  year      = {2020},
  url       = {https://arxiv.org/abs/2011.00677},
  eprinttype = {arXiv},
  eprint    = {2011.00677},
  timestamp = {Fri, 06 Nov 2020 15:32:47 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indolem_ntp"

_DESCRIPTION = """\
NTP (Next Tweet prediction) is one of the comprehensive Indonesian benchmarks that given a list of tweets and an option, we predict if the option is the next tweet or not.
This task is similar to the next sentence prediction (NSP) task used to train BERT (Devlin et al., 2019).
In NTP, each instance consists of a Twitter thread (containing 2 to 4 tweets) that we call the premise, and four possible options for the next tweet, one of which is the actual response from the original thread.

Train: 5681 threads
Development: 811 threads
Test: 1890 threads
"""

_HOMEPAGE = "https://indolem.github.io/"

_LICENSE = "Creative Commons Attribution 4.0"

_URLS = {
    _DATASETNAME: {
        "train": "https://raw.githubusercontent.com/indolem/indolem/main/next_tweet_prediction/data/train.json",
        "validation": "https://raw.githubusercontent.com/indolem/indolem/main/next_tweet_prediction/data/dev.json",
        "test": "https://raw.githubusercontent.com/indolem/indolem/main/next_tweet_prediction/data/test.json",
    }
}

_SUPPORTED_TASKS = [Tasks.NEXT_SENTENCE_PREDICTION]

_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"


class IndolemNTPDataset(datasets.GeneratorBasedBuilder):
    """NTP (Next Tweet prediction) is based on next sentence prediction (NSP), consists of a Twitter thread (containing  2 to 4 tweets) and four possible options for the next tweet, one of which is the actual response from the original thread."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)

    BUILDER_CONFIGS = [
        NusantaraConfig(
            name="indolem_ntp_source",
            version=SOURCE_VERSION,
            description="Indolem NTP source schema",
            schema="source",
            subset_id="indolem_ntp",
        ),
        NusantaraConfig(
            name="indolem_ntp_nusantara_pairs",
            version=NUSANTARA_VERSION,
            description="Indolem NTP Nusantara schema",
            schema="nusantara_pairs",
            subset_id="indolem_ntp",
        ),
    ]

    DEFAULT_CONFIG_NAME = "indolem_ntp_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tweets": datasets.Value("string"),
                    "next_tweet": datasets.Value("string"),
                    "label": datasets.Value("int8"),
                }
            )
        elif self.config.schema == "nusantara_pairs":
            features = schemas.pairs_features([0, 1])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        data = self._read_data(filepath)
        if self.config.schema == "source":
            for i, row in enumerate(data):
                ex = {
                    "id": str(i),
                    "tweets": row[0],
                    "next_tweet": row[1],
                    "label": row[2],
                }
                yield i, ex

        elif self.config.schema == "nusantara_pairs":
            for i, row in enumerate(data):
                ex = {
                    "id": str(i),
                    "text_1": row[0],
                    "text_2": row[1],
                    "label": row[2],
                }
                yield i, ex

    def _read_data(self, fname):
        data = json.load(open(fname, "r"))
        results = []
        for datum in data:
            tweets = " ".join(datum["tweets"])
            for key, option in datum["next_tweet"]:
                results.append((tweets, option, key))
        return results