File size: 5,899 Bytes
43be7e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
from pathlib import Path
from typing import Dict, List, Tuple
import json
import datasets
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@article{DBLP:journals/corr/abs-2011-00677,
author = {Fajri Koto and
Afshin Rahimi and
Jey Han Lau and
Timothy Baldwin},
title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language
Model for Indonesian {NLP}},
journal = {CoRR},
volume = {abs/2011.00677},
year = {2020},
url = {https://arxiv.org/abs/2011.00677},
eprinttype = {arXiv},
eprint = {2011.00677},
timestamp = {Fri, 06 Nov 2020 15:32:47 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indolem_ntp"
_DESCRIPTION = """\
NTP (Next Tweet prediction) is one of the comprehensive Indonesian benchmarks that given a list of tweets and an option, we predict if the option is the next tweet or not.
This task is similar to the next sentence prediction (NSP) task used to train BERT (Devlin et al., 2019).
In NTP, each instance consists of a Twitter thread (containing 2 to 4 tweets) that we call the premise, and four possible options for the next tweet, one of which is the actual response from the original thread.
Train: 5681 threads
Development: 811 threads
Test: 1890 threads
"""
_HOMEPAGE = "https://indolem.github.io/"
_LICENSE = "Creative Commons Attribution 4.0"
_URLS = {
_DATASETNAME: {
"train": "https://raw.githubusercontent.com/indolem/indolem/main/next_tweet_prediction/data/train.json",
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/next_tweet_prediction/data/dev.json",
"test": "https://raw.githubusercontent.com/indolem/indolem/main/next_tweet_prediction/data/test.json",
}
}
_SUPPORTED_TASKS = [Tasks.NEXT_SENTENCE_PREDICTION]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class IndolemNTPDataset(datasets.GeneratorBasedBuilder):
"""NTP (Next Tweet prediction) is based on next sentence prediction (NSP), consists of a Twitter thread (containing 2 to 4 tweets) and four possible options for the next tweet, one of which is the actual response from the original thread."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
BUILDER_CONFIGS = [
NusantaraConfig(
name="indolem_ntp_source",
version=SOURCE_VERSION,
description="Indolem NTP source schema",
schema="source",
subset_id="indolem_ntp",
),
NusantaraConfig(
name="indolem_ntp_nusantara_pairs",
version=NUSANTARA_VERSION,
description="Indolem NTP Nusantara schema",
schema="nusantara_pairs",
subset_id="indolem_ntp",
),
]
DEFAULT_CONFIG_NAME = "indolem_ntp_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"tweets": datasets.Value("string"),
"next_tweet": datasets.Value("string"),
"label": datasets.Value("int8"),
}
)
elif self.config.schema == "nusantara_pairs":
features = schemas.pairs_features([0, 1])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
data = self._read_data(filepath)
if self.config.schema == "source":
for i, row in enumerate(data):
ex = {
"id": str(i),
"tweets": row[0],
"next_tweet": row[1],
"label": row[2],
}
yield i, ex
elif self.config.schema == "nusantara_pairs":
for i, row in enumerate(data):
ex = {
"id": str(i),
"text_1": row[0],
"text_2": row[1],
"label": row[2],
}
yield i, ex
def _read_data(self, fname):
data = json.load(open(fname, "r"))
results = []
for datum in data:
tweets = " ".join(datum["tweets"])
for key, option in datum["next_tweet"]:
results.append((tweets, option, key))
return results
|