Datasets:

Languages:
Indonesian
ArXiv:
holylovenia commited on
Commit
8f19e27
1 Parent(s): eb9d093

Upload indolem_sentiment.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. indolem_sentiment.py +25 -25
indolem_sentiment.py CHANGED
@@ -28,7 +28,7 @@ To create a dataset loading script you will create a class and implement 3 metho
28
 
29
  TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset.
30
 
31
- [nusantara_schema_name] = (kb, pairs, qa, text, t2t, entailment)
32
  """
33
  from base64 import encode
34
  import json
@@ -37,10 +37,10 @@ from typing import Dict, List, Tuple
37
 
38
  import datasets
39
 
40
- from nusacrowd.utils import schemas
41
- from nusacrowd.utils.common_parser import load_conll_data
42
- from nusacrowd.utils.configs import NusantaraConfig
43
- from nusacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_NUSANTARA_VIEW_NAME
44
 
45
  # TODO: Add BibTeX citation
46
  _CITATION = """\
@@ -67,7 +67,7 @@ _CITATION = """\
67
  # E.g. Hallmarks of Cancer: [dataset_name] --> hallmarks_of_cancer
68
  _DATASETNAME = "indolem_sentiment"
69
  _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
70
- _UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
71
 
72
  _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
73
  _LOCAL = False
@@ -101,7 +101,7 @@ _LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
101
  # For local datasets, this variable can be an empty dictionary.
102
 
103
  # For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
104
- # In most cases the URLs will be the same for the source and nusantara config.
105
  # However, if you need to access different files for each config you can have multiple entries in this dict.
106
  # This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
107
  _URLS = {
@@ -120,7 +120,7 @@ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] # example: [Tasks.TRANSLATION, Ta
120
  # provided by the original dataset as a version goes.
121
  _SOURCE_VERSION = "1.0.0"
122
 
123
- _NUSANTARA_VERSION = "1.0.0"
124
 
125
 
126
  # TODO: Name the dataset class to match the script name using CamelCase instead of snake_case
@@ -128,40 +128,40 @@ class IndolemSentimentDataset(datasets.GeneratorBasedBuilder):
128
 
129
  label_classes = ['negative','positive']
130
  SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
131
- NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
132
 
133
- # You will be able to load the "source" or "nusanrata" configurations with
134
  # ds_source = datasets.load_dataset('my_dataset', name='source')
135
- # ds_nusantara = datasets.load_dataset('my_dataset', name='nusantara')
136
 
137
  # For local datasets you can make use of the `data_dir` and `data_files` kwargs
138
  # https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
139
  # ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
140
- # ds_nusantara = datasets.load_dataset('my_dataset', name='nusantara', data_dir="/path/to/data/files")
141
 
142
  # TODO: For each dataset, implement Config for Source and Nusantara;
143
- # If dataset contains more than one subset (see nusantara/nusa_datasets/smsa.py) implement for EACH of them.
144
  # Each of them should contain:
145
- # - name: should be unique for each dataset config eg. smsa_(source|nusantara)_[nusantara_schema_name]
146
- # - version: option = (SOURCE_VERSION|NUSANTARA_VERSION)
147
  # - description: one line description for the dataset
148
- # - schema: options = (source|nusantara_[nusantara_schema_name])
149
  # - subset_id: subset id is the canonical name for the dataset (eg. smsa)
150
- # where [nusantara_schema_name] = (kb, pairs, qa, text, t2t)
151
 
152
  BUILDER_CONFIGS = [
153
- NusantaraConfig(
154
  name="indolem_sentiment_source",
155
  version=SOURCE_VERSION,
156
  description="indolem_sentiment source schema",
157
  schema="source",
158
  subset_id="indolem_sentiment",
159
  ),
160
- NusantaraConfig(
161
- name="indolem_sentiment_nusantara_text",
162
- version=NUSANTARA_VERSION,
163
  description="indolem_sentiment Nusantara schema",
164
- schema="nusantara_text",
165
  subset_id="indolem_sentiment",
166
  ),
167
  ]
@@ -176,7 +176,7 @@ class IndolemSentimentDataset(datasets.GeneratorBasedBuilder):
176
 
177
  if self.config.schema == "source":
178
  features = datasets.Features({"sentence":datasets.Value("string"), "sentiment": datasets.Value("int32")})
179
- elif self.config.schema == "nusantara_text":
180
  features = schemas.text_features(self.label_classes)
181
 
182
  return datasets.DatasetInfo(
@@ -190,7 +190,7 @@ class IndolemSentimentDataset(datasets.GeneratorBasedBuilder):
190
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
191
  """Returns SplitGenerators."""
192
  # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
193
- # If you need to access the "source" or "nusantara" config choice, that will be in self.config.name
194
  # LOCAL DATASETS: You do not need the dl_manager; you can ignore this argument. Make sure `gen_kwargs` in the return gets passed the right filepath
195
  # PUBLIC DATASETS: Assign your data-dir based on the dl_manager.
196
  # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs; many examples use the download_and_extract method; see the DownloadManager docs here: https://huggingface.co/docs/datasets/package_reference/builder_classes.html#datasets.DownloadManager
@@ -252,7 +252,7 @@ class IndolemSentimentDataset(datasets.GeneratorBasedBuilder):
252
  sentiment = int(line[-1])
253
  if self.config.schema == 'source':
254
  ex = {'sentence': sentence, 'sentiment': sentiment}
255
- elif self.config.schema == 'nusantara_text':
256
  ex = {'id': str(id), 'text': str(sentence), 'label': self.label_classes[sentiment]}
257
  else:
258
  raise ValueError(f"Invalid config: {self.config.name}")
 
28
 
29
  TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset.
30
 
31
+ [seacrowd_schema_name] = (kb, pairs, qa, text, t2t, entailment)
32
  """
33
  from base64 import encode
34
  import json
 
37
 
38
  import datasets
39
 
40
+ from seacrowd.utils import schemas
41
+ from seacrowd.utils.common_parser import load_conll_data
42
+ from seacrowd.utils.configs import SEACrowdConfig
43
+ from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME
44
 
45
  # TODO: Add BibTeX citation
46
  _CITATION = """\
 
67
  # E.g. Hallmarks of Cancer: [dataset_name] --> hallmarks_of_cancer
68
  _DATASETNAME = "indolem_sentiment"
69
  _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
70
+ _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
71
 
72
  _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
73
  _LOCAL = False
 
101
  # For local datasets, this variable can be an empty dictionary.
102
 
103
  # For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
104
+ # In most cases the URLs will be the same for the source and seacrowd config.
105
  # However, if you need to access different files for each config you can have multiple entries in this dict.
106
  # This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
107
  _URLS = {
 
120
  # provided by the original dataset as a version goes.
121
  _SOURCE_VERSION = "1.0.0"
122
 
123
+ _SEACROWD_VERSION = "2024.06.20"
124
 
125
 
126
  # TODO: Name the dataset class to match the script name using CamelCase instead of snake_case
 
128
 
129
  label_classes = ['negative','positive']
130
  SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
131
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
132
 
133
+ # You will be able to load the "source" or "se" configurations with
134
  # ds_source = datasets.load_dataset('my_dataset', name='source')
135
+ # ds_seacrowd = datasets.load_dataset('my_dataset', name='seacrowd')
136
 
137
  # For local datasets you can make use of the `data_dir` and `data_files` kwargs
138
  # https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
139
  # ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
140
+ # ds_seacrowd = datasets.load_dataset('my_dataset', name='seacrowd', data_dir="/path/to/data/files")
141
 
142
  # TODO: For each dataset, implement Config for Source and Nusantara;
143
+ # If dataset contains more than one subset (see seacrowd/sea_datasets/smsa.py) implement for EACH of them.
144
  # Each of them should contain:
145
+ # - name: should be unique for each dataset config eg. smsa_(source|seacrowd)_[seacrowd_schema_name]
146
+ # - version: option = (SOURCE_VERSION|SEACROWD_VERSION)
147
  # - description: one line description for the dataset
148
+ # - schema: options = (source|seacrowd_[seacrowd_schema_name])
149
  # - subset_id: subset id is the canonical name for the dataset (eg. smsa)
150
+ # where [seacrowd_schema_name] = (kb, pairs, qa, text, t2t)
151
 
152
  BUILDER_CONFIGS = [
153
+ SEACrowdConfig(
154
  name="indolem_sentiment_source",
155
  version=SOURCE_VERSION,
156
  description="indolem_sentiment source schema",
157
  schema="source",
158
  subset_id="indolem_sentiment",
159
  ),
160
+ SEACrowdConfig(
161
+ name="indolem_sentiment_seacrowd_text",
162
+ version=SEACROWD_VERSION,
163
  description="indolem_sentiment Nusantara schema",
164
+ schema="seacrowd_text",
165
  subset_id="indolem_sentiment",
166
  ),
167
  ]
 
176
 
177
  if self.config.schema == "source":
178
  features = datasets.Features({"sentence":datasets.Value("string"), "sentiment": datasets.Value("int32")})
179
+ elif self.config.schema == "seacrowd_text":
180
  features = schemas.text_features(self.label_classes)
181
 
182
  return datasets.DatasetInfo(
 
190
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
191
  """Returns SplitGenerators."""
192
  # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
193
+ # If you need to access the "source" or "seacrowd" config choice, that will be in self.config.name
194
  # LOCAL DATASETS: You do not need the dl_manager; you can ignore this argument. Make sure `gen_kwargs` in the return gets passed the right filepath
195
  # PUBLIC DATASETS: Assign your data-dir based on the dl_manager.
196
  # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs; many examples use the download_and_extract method; see the DownloadManager docs here: https://huggingface.co/docs/datasets/package_reference/builder_classes.html#datasets.DownloadManager
 
252
  sentiment = int(line[-1])
253
  if self.config.schema == 'source':
254
  ex = {'sentence': sentence, 'sentiment': sentiment}
255
+ elif self.config.schema == 'seacrowd_text':
256
  ex = {'id': str(id), 'text': str(sentence), 'label': self.label_classes[sentiment]}
257
  else:
258
  raise ValueError(f"Invalid config: {self.config.name}")