File size: 8,398 Bytes
67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c 63e25c1 67d795c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This template serves as a starting point for contributing a dataset to the Nusantara Dataset repo.
When modifying it for your dataset, look for TODO items that offer specific instructions.
Full documentation on writing dataset loading scripts can be found here:
https://huggingface.co/docs/datasets/add_dataset.html
To create a dataset loading script you will create a class and implement 3 methods:
* `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object.
* `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split.
* `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`.
TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset.
[seacrowd_schema_name] = (kb, pairs, qa, text, t2t, entailment)
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{mcdonald-etal-2013-universal,
title = "{U}niversal {D}ependency Annotation for Multilingual Parsing",
author = {McDonald, Ryan and
Nivre, Joakim and
Quirmbach-Brundage, Yvonne and
Goldberg, Yoav and
Das, Dipanjan and
Ganchev, Kuzman and
Hall, Keith and
Petrov, Slav and
Zhang, Hao and
T{\"a}ckstr{\"o}m, Oscar and
Bedini, Claudia and
Bertomeu Castell{\'o}, N{\'u}ria and
Lee, Jungmee},
booktitle = "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2013",
address = "Sofia, Bulgaria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P13-2017",
pages = "92--97",
}
@article{DBLP:journals/corr/abs-2011-00677,
author = {Fajri Koto and
Afshin Rahimi and
Jey Han Lau and
Timothy Baldwin},
title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language
Model for Indonesian {NLP}},
journal = {CoRR},
volume = {abs/2011.00677},
year = {2020},
url = {https://arxiv.org/abs/2011.00677},
eprinttype = {arXiv},
eprint = {2011.00677},
timestamp = {Fri, 06 Nov 2020 15:32:47 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "indolem_ud_id_gsd"
_DESCRIPTION = """\
The Indonesian-GSD treebank consists of 5598 sentences and 122k words split into train/dev/test of 97k/12k/11k words.
The treebank was originally converted from the content head version of the universal dependency treebank v2.0 (legacy) in 2015.\
In order to comply with the latest Indonesian annotation guidelines, the treebank has undergone a major revision between UD releases v2.8 and v2.9 (2021).
"""
_HOMEPAGE = "https://indolem.github.io/"
_LICENSE = "Creative Commons Attribution 4.0"
_URLS = {
_DATASETNAME: {
"train": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-train.conllu",
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-dev.conllu",
"test": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-test.conllu",
},
}
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
# TODO: Name the dataset class to match the script name using CamelCase instead of snake_case
class IndolemUdIdGsdDataset(datasets.GeneratorBasedBuilder):
"""The Indonesian-GSD treebank, part of Universal-Dependency project. Consists of 5598 sentences and 122k words."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_kb",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} Nusantara KB schema",
schema="seacrowd_kb",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
# metadata
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
# tokens
"id": [datasets.Value("string")],
"form": [datasets.Value("string")],
"lemma": [datasets.Value("string")],
"upos": [datasets.Value("string")],
"xpos": [datasets.Value("string")],
"feats": [datasets.Value("string")],
"head": [datasets.Value("string")],
"deprel": [datasets.Value("string")],
"deps": [datasets.Value("string")],
"misc": [datasets.Value("string")],
}
)
elif self.config.schema == "seacrowd_kb":
features = schemas.kb_features
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[self.config.subset_id]
data_dir = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
try:
generator_fn = {
"source": load_ud_data,
"seacrowd_kb": load_ud_data_as_seacrowd_kb,
}[self.config.schema]
except KeyError:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
for key, example in enumerate(generator_fn(filepath)):
yield key, example
|