|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This template serves as a starting point for contributing a dataset to the Nusantara Dataset repo. |
|
|
|
When modifying it for your dataset, look for TODO items that offer specific instructions. |
|
|
|
Full documentation on writing dataset loading scripts can be found here: |
|
https://huggingface.co/docs/datasets/add_dataset.html |
|
|
|
To create a dataset loading script you will create a class and implement 3 methods: |
|
* `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object. |
|
* `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split. |
|
* `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`. |
|
|
|
TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset. |
|
|
|
[seacrowd_schema_name] = (kb, pairs, qa, text, t2t, entailment) |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{mcdonald-etal-2013-universal, |
|
title = "{U}niversal {D}ependency Annotation for Multilingual Parsing", |
|
author = {McDonald, Ryan and |
|
Nivre, Joakim and |
|
Quirmbach-Brundage, Yvonne and |
|
Goldberg, Yoav and |
|
Das, Dipanjan and |
|
Ganchev, Kuzman and |
|
Hall, Keith and |
|
Petrov, Slav and |
|
Zhang, Hao and |
|
T{\"a}ckstr{\"o}m, Oscar and |
|
Bedini, Claudia and |
|
Bertomeu Castell{\'o}, N{\'u}ria and |
|
Lee, Jungmee}, |
|
booktitle = "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", |
|
month = aug, |
|
year = "2013", |
|
address = "Sofia, Bulgaria", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P13-2017", |
|
pages = "92--97", |
|
} |
|
|
|
@article{DBLP:journals/corr/abs-2011-00677, |
|
author = {Fajri Koto and |
|
Afshin Rahimi and |
|
Jey Han Lau and |
|
Timothy Baldwin}, |
|
title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language |
|
Model for Indonesian {NLP}}, |
|
journal = {CoRR}, |
|
volume = {abs/2011.00677}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2011.00677}, |
|
eprinttype = {arXiv}, |
|
eprint = {2011.00677}, |
|
timestamp = {Fri, 06 Nov 2020 15:32:47 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "indolem_ud_id_gsd" |
|
|
|
_DESCRIPTION = """\ |
|
The Indonesian-GSD treebank consists of 5598 sentences and 122k words split into train/dev/test of 97k/12k/11k words. |
|
The treebank was originally converted from the content head version of the universal dependency treebank v2.0 (legacy) in 2015.\ |
|
In order to comply with the latest Indonesian annotation guidelines, the treebank has undergone a major revision between UD releases v2.8 and v2.9 (2021). |
|
""" |
|
|
|
_HOMEPAGE = "https://indolem.github.io/" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-train.conllu", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-dev.conllu", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-test.conllu", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
|
|
class IndolemUdIdGsdDataset(datasets.GeneratorBasedBuilder): |
|
"""The Indonesian-GSD treebank, part of Universal-Dependency project. Consists of 5598 sentences and 122k words.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_kb", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} Nusantara KB schema", |
|
schema="seacrowd_kb", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
|
|
"sent_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
|
|
"id": [datasets.Value("string")], |
|
"form": [datasets.Value("string")], |
|
"lemma": [datasets.Value("string")], |
|
"upos": [datasets.Value("string")], |
|
"xpos": [datasets.Value("string")], |
|
"feats": [datasets.Value("string")], |
|
"head": [datasets.Value("string")], |
|
"deprel": [datasets.Value("string")], |
|
"deps": [datasets.Value("string")], |
|
"misc": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
features = schemas.kb_features |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[self.config.subset_id] |
|
data_dir = dl_manager.download(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
try: |
|
generator_fn = { |
|
"source": load_ud_data, |
|
"seacrowd_kb": load_ud_data_as_seacrowd_kb, |
|
}[self.config.schema] |
|
except KeyError: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
for key, example in enumerate(generator_fn(filepath)): |
|
yield key, example |
|
|