# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This template serves as a starting point for contributing a dataset to the Nusantara Dataset repo. When modifying it for your dataset, look for TODO items that offer specific instructions. Full documentation on writing dataset loading scripts can be found here: https://huggingface.co/docs/datasets/add_dataset.html To create a dataset loading script you will create a class and implement 3 methods: * `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object. * `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split. * `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`. TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset. [seacrowd_schema_name] = (kb, pairs, qa, text, t2t, entailment) """ from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _CITATION = """\ @inproceedings{mcdonald-etal-2013-universal, title = "{U}niversal {D}ependency Annotation for Multilingual Parsing", author = {McDonald, Ryan and Nivre, Joakim and Quirmbach-Brundage, Yvonne and Goldberg, Yoav and Das, Dipanjan and Ganchev, Kuzman and Hall, Keith and Petrov, Slav and Zhang, Hao and T{\"a}ckstr{\"o}m, Oscar and Bedini, Claudia and Bertomeu Castell{\'o}, N{\'u}ria and Lee, Jungmee}, booktitle = "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = aug, year = "2013", address = "Sofia, Bulgaria", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P13-2017", pages = "92--97", } @article{DBLP:journals/corr/abs-2011-00677, author = {Fajri Koto and Afshin Rahimi and Jey Han Lau and Timothy Baldwin}, title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language Model for Indonesian {NLP}}, journal = {CoRR}, volume = {abs/2011.00677}, year = {2020}, url = {https://arxiv.org/abs/2011.00677}, eprinttype = {arXiv}, eprint = {2011.00677}, timestamp = {Fri, 06 Nov 2020 15:32:47 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DATASETNAME = "indolem_ud_id_gsd" _DESCRIPTION = """\ The Indonesian-GSD treebank consists of 5598 sentences and 122k words split into train/dev/test of 97k/12k/11k words. The treebank was originally converted from the content head version of the universal dependency treebank v2.0 (legacy) in 2015.\ In order to comply with the latest Indonesian annotation guidelines, the treebank has undergone a major revision between UD releases v2.8 and v2.9 (2021). """ _HOMEPAGE = "https://indolem.github.io/" _LICENSE = "Creative Commons Attribution 4.0" _URLS = { _DATASETNAME: { "train": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-train.conllu", "validation": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-dev.conllu", "test": "https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-test.conllu", }, } _SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" # TODO: Name the dataset class to match the script name using CamelCase instead of snake_case class IndolemUdIdGsdDataset(datasets.GeneratorBasedBuilder): """The Indonesian-GSD treebank, part of Universal-Dependency project. Consists of 5598 sentences and 122k words.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_kb", version=SEACROWD_VERSION, description=f"{_DATASETNAME} Nusantara KB schema", schema="seacrowd_kb", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { # metadata "sent_id": datasets.Value("string"), "text": datasets.Value("string"), # tokens "id": [datasets.Value("string")], "form": [datasets.Value("string")], "lemma": [datasets.Value("string")], "upos": [datasets.Value("string")], "xpos": [datasets.Value("string")], "feats": [datasets.Value("string")], "head": [datasets.Value("string")], "deprel": [datasets.Value("string")], "deps": [datasets.Value("string")], "misc": [datasets.Value("string")], } ) elif self.config.schema == "seacrowd_kb": features = schemas.kb_features else: raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[self.config.subset_id] data_dir = dl_manager.download(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir["validation"], }, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` try: generator_fn = { "source": load_ud_data, "seacrowd_kb": load_ud_data_as_seacrowd_kb, }[self.config.schema] except KeyError: raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") for key, example in enumerate(generator_fn(filepath)): yield key, example