File size: 3,576 Bytes
bbfac91 164f04c bbfac91 164f04c bbfac91 2be6689 dd17492 2be6689 48083a3 2be6689 bbfac91 dd17492 2be6689 bbfac91 dd17492 bbfac91 dd17492 bbfac91 dd17492 bbfac91 dd17492 bbfac91 dd17492 2be6689 bbfac91 2be6689 bbfac91 48083a3 2be6689 bbfac91 2be6689 bbfac91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- ind
pretty_name: Indonli
task_categories:
- textual-entailment
tags:
- textual-entailment
---
This dataset is designed for Natural Language Inference NLP task.It is designed to provide a challenging test-bed
for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural
changes, idioms, or temporal and spatial reasoning.
## Languages
ind
## Supported Tasks
Textual Entailment
## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/indonli", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("indonli", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("indonli"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
## Dataset Homepage
[https://github.com/ir-nlp-csui/indonli](https://github.com/ir-nlp-csui/indonli)
## Dataset Version
Source: 1.1.0. SEACrowd: 2024.06.20.
## Dataset License
Creative Common Attribution Share-Alike 4.0 International
## Citation
If you are using the **Indonli** dataloader in your work, please cite the following:
```
@inproceedings{mahendra-etal-2021-indonli,
title = "{I}ndo{NLI}: A Natural Language Inference Dataset for {I}ndonesian",
author = "Mahendra, Rahmad and Aji, Alham Fikri and Louvan, Samuel and Rahman, Fahrurrozi and Vania, Clara",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.821",
pages = "10511--10527",
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}
``` |