File size: 6,886 Bytes
837b330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
from nusacrowd.utils import schemas
import jsonlines
from nltk.tokenize.treebank import TreebankWordDetokenizer

_CITATION = """\
@INPROCEEDINGS{8629109,
  author={Kurniawan, Kemal and Louvan, Samuel},
  booktitle={2018 International Conference on Asian Language Processing (IALP)}, 
  title={Indosum: A New Benchmark Dataset for Indonesian Text Summarization}, 
  year={2018},
  volume={},
  number={},
  pages={215-220},
  doi={10.1109/IALP.2018.8629109}}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indosum"

_DESCRIPTION = """\
INDOSUM is a new benchmark dataset for Indonesian text summarization. 
The dataset consists of news articles and manually constructed summaries.
"""

_HOMEPAGE = "https://github.com/kata-ai/indosum"

_LICENSE = "Apache License, Version 2.0"

_URLS = {
    _DATASETNAME: "https://drive.google.com/uc?id=1OgYbPfXFAv3TbwP1Qcwt_CC9cVWSJaco",
}

_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]

_SOURCE_VERSION = "1.0.0"

_NUSANTARA_VERSION = "1.0.0"


class IndoSUM(datasets.GeneratorBasedBuilder):
    """INDOSUM is a new benchmark dataset for Indonesian text summarization. The dataset consists of news articles and manually constructed summaries."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)

    BUILDER_CONFIGS = (
        [
            NusantaraConfig(
                name="indosum_fold{fold_number}_source".format(fold_number=i),
                version=_SOURCE_VERSION,
                description="indosum source schema",
                schema="source",
                subset_id="indosum_fold{fold_number}".format(fold_number=i),
            ) for i in range(5)
        ]
        +
        [
            NusantaraConfig(
            name="indosum_fold{fold_number}_nusantara_t2t".format(fold_number=i),
            version=_NUSANTARA_VERSION,
            description="indosum Nusantara schema",
            schema="nusantara_t2t",
            subset_id="indosum_fold{fold_number}".format(fold_number=i),
        ) for i in range(5)
        ]
    )

    DEFAULT_CONFIG_NAME = "indosum_fold0_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
               {
                   "document": datasets.Value("string"),
                   "id": datasets.Value("string"),
                   "summary": datasets.Value("string")
               }
            )

        elif self.config.schema == "nusantara_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _get_fold_index(self):
        try:
            subset_id = self.config.subset_id
            idx_fold = subset_id.index("_fold")
            file_id = subset_id[(idx_fold + 5):]
            return int(file_id)
        except:
            return 0

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        idx = self._get_fold_index()

        urls = _URLS[_DATASETNAME]

        data_dir = Path(dl_manager.download_and_extract(urls))

        location = {
            "train": "indosum/train.0{fold_number}.jsonl",
            "test": "indosum/test.0{fold_number}.jsonl",
            "dev": "indosum/dev.0{fold_number}.jsonl"
        }

        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,

                gen_kwargs={
                    "filepath": os.path.join(data_dir, location["train"].format(fold_number=idx+1)),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, location["test"].format(fold_number=idx+1)),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, location["dev"].format(fold_number=idx+1)),
                    "split": "dev",
                },
            ),
        ]

    def _get_full_paragraph_and_summary(self, data: Dict) -> Tuple[str, str]:
        detokenizer = TreebankWordDetokenizer()
        paragraph = ""
        summary = ""
        begin_paragraph = True
        begin_summary = True

        for each_paragraph in data["paragraphs"]:
            for each_sentence in each_paragraph:
                detokenized_sentence = detokenizer.detokenize(each_sentence)
                if begin_paragraph:
                    paragraph+=detokenized_sentence
                    begin_paragraph = False
                else:
                    paragraph = "{} {}".format(paragraph, detokenized_sentence)
        
        for each_summary in data["summary"]:
            detokenized_sentence = detokenizer.detokenize(each_summary)
            if begin_summary:
                summary+=detokenized_sentence
                begin_summary = False
            else:
                summary = "{} {}".format(summary, detokenized_sentence)

        return paragraph, summary

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:

        if self.config.schema == "source":
            i = 0
            with jsonlines.open(filepath) as f:
                for each_data in f.iter():
                    full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data)
                    ex = {
                        "id": each_data["id"],
                        "document": full_paragraph,
                        "summary": full_summary
                    }
                    yield i, ex
                    i+=1

        elif self.config.schema == "nusantara_t2t":
            i = 0
            with jsonlines.open(filepath) as f:
                for each_data in f.iter():
                    full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data)
                    ex = {
                        "id": each_data["id"],
                        "text_1": full_paragraph,
                        "text_2": full_summary,
                        "text_1_name": "document",
                        "text_2_name": "summary"
                    }
                    yield i, ex
                    i+=1