Datasets:

Languages:
Indonesian
ArXiv:
License:
indowiki / indowiki.py
holylovenia's picture
Upload indowiki.py with huggingface_hub
1b825db verified
raw
history blame
7.69 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses
_CITATION = """\
@INPROCEEDINGS{ramli2022indokepler,
author={Ramli, Inigo and Krisnadhi, Adila Alfa and Prasojo, Radityo Eko},
booktitle={2022 7th International Workshop on Big Data and Information Security (IWBIS)},
title={IndoKEPLER, IndoWiki, and IndoLAMA: A Knowledge-enhanced Language Model, Dataset, and Benchmark for the Indonesian Language},
year={2022},
volume={},
number={},
pages={19-26},
doi={10.1109/IWBIS56557.2022.9924844}}
"""
_DATASETNAME = "indowiki"
_DESCRIPTION = """\
IndoWiki is a knowledge-graph dataset taken from WikiData and aligned with Wikipedia Bahasa Indonesia as it's corpus.
"""
_HOMEPAGE = "https://github.com/IgoRamli/IndoWiki"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.MIT.value
_LOCAL = False
_URLS = {
"inductive": {
"train": "https://drive.google.com/uc?export=download&id=1S3vNx9By5CWKGkObjtXaI6Jr4xri2Tz3",
"valid": "https://drive.google.com/uc?export=download&id=1cP-zDIxp9a-Bw9uYd40K9IN-4wg4dOgy",
"test": "https://drive.google.com/uc?export=download&id=1pLcoJgYmgQiN4Gv9tRcI26zM7-OgHcuZ",
},
"transductive": {
"train": "https://drive.google.com/uc?export=download&id=1KXDVwboo1h2yk_kAqv7IPYnHXCK6g-6X",
"valid": "https://drive.google.com/uc?export=download&id=1eRwpuRPYOnA-7FZ-YNZjRJ2DHuJsfUIE",
"test": "https://drive.google.com/uc?export=download&id=1cy9FwDMB_U-js8P8u4IWolvNeIFkQVDh",
},
"text": "https://drive.usercontent.google.com/download?id=1YC4P_IPSo1AsEwm5Z_4GBjDdwCbvokxX&export=download&authuser=0&confirm=t&uuid=36aa95f5-e1b6-43c1-a34f-754d14d8b473&at=APZUnTWD7fwarBs4ZVRy_QdKbDXi%3A1709478240158",
}
# none of the tasks in schema
# dataset is used to learn knowledge embedding
_SUPPORTED_TASKS = []
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IndoWiki(datasets.GeneratorBasedBuilder):
"""IndoWiki knowledge base dataset from https://github.com/IgoRamli/IndoWiki"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
# inductive setting
SEACrowdConfig(
name=f"{_DATASETNAME}_inductive_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
# transductive setting
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"ent1": datasets.Value("string"),
"ent2": datasets.Value("string"),
"ent1_text": datasets.Value("string"),
"ent2_text": datasets.Value("string"),
"relation": datasets.Value("string"),
}
)
else:
raise NotImplementedError()
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if "inductive" in self.config.name:
setting = "inductive"
data_paths = {
"inductive": {
"train": Path(dl_manager.download_and_extract(_URLS["inductive"]["train"])),
"valid": Path(dl_manager.download_and_extract(_URLS["inductive"]["valid"])),
"test": Path(dl_manager.download_and_extract(_URLS["inductive"]["test"])),
},
"text": Path(dl_manager.download_and_extract(_URLS["text"])),
}
else:
setting = "transductive"
data_paths = {
"transductive": {
"train": Path(dl_manager.download_and_extract(_URLS["transductive"]["train"])),
"valid": Path(dl_manager.download_and_extract(_URLS["transductive"]["valid"])),
"test": Path(dl_manager.download_and_extract(_URLS["transductive"]["test"])),
},
"text": Path(dl_manager.download_and_extract(_URLS["text"])),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"triplets_filepath": data_paths[setting]["train"],
"text_filepath": data_paths["text"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"triplets_filepath": data_paths[setting]["test"],
"text_filepath": data_paths["text"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"triplets_filepath": data_paths[setting]["valid"],
"text_filepath": data_paths["text"],
"split": "dev",
},
),
]
def _generate_examples(self, triplets_filepath: Path, text_filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# read triplets file
with open(triplets_filepath, "r", encoding="utf-8") as triplets_file:
triplets_data = triplets_file.readlines()
triplets_data = [s.strip("\n").split("\t") for s in triplets_data]
# read text description file
with open(text_filepath, "r", encoding="utf-8") as text_file:
text_data = text_file.readlines()
# dictionary of entity: text description of entity
text_dict = {s.split("\t")[0]: s.split("\t")[1].strip("\n") for s in text_data}
num_sample = len(triplets_data)
for i in range(num_sample):
if self.config.schema == "source":
example = {
"id": str(i),
"ent1": triplets_data[i][0],
"ent2": triplets_data[i][2],
"ent1_text": text_dict[triplets_data[i][0]],
"ent2_text": text_dict[triplets_data[i][2]],
"relation": triplets_data[i][1],
}
yield i, example