|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{ramli2022indokepler, |
|
author={Ramli, Inigo and Krisnadhi, Adila Alfa and Prasojo, Radityo Eko}, |
|
booktitle={2022 7th International Workshop on Big Data and Information Security (IWBIS)}, |
|
title={IndoKEPLER, IndoWiki, and IndoLAMA: A Knowledge-enhanced Language Model, Dataset, and Benchmark for the Indonesian Language}, |
|
year={2022}, |
|
volume={}, |
|
number={}, |
|
pages={19-26}, |
|
doi={10.1109/IWBIS56557.2022.9924844}} |
|
""" |
|
|
|
_DATASETNAME = "indowiki" |
|
_DESCRIPTION = """\ |
|
IndoWiki is a knowledge-graph dataset taken from WikiData and aligned with Wikipedia Bahasa Indonesia as it's corpus. |
|
""" |
|
_HOMEPAGE = "https://github.com/IgoRamli/IndoWiki" |
|
_LANGUAGES = ["ind"] |
|
_LICENSE = Licenses.MIT.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"inductive": { |
|
"train": "https://drive.google.com/uc?export=download&id=1S3vNx9By5CWKGkObjtXaI6Jr4xri2Tz3", |
|
"valid": "https://drive.google.com/uc?export=download&id=1cP-zDIxp9a-Bw9uYd40K9IN-4wg4dOgy", |
|
"test": "https://drive.google.com/uc?export=download&id=1pLcoJgYmgQiN4Gv9tRcI26zM7-OgHcuZ", |
|
}, |
|
"transductive": { |
|
"train": "https://drive.google.com/uc?export=download&id=1KXDVwboo1h2yk_kAqv7IPYnHXCK6g-6X", |
|
"valid": "https://drive.google.com/uc?export=download&id=1eRwpuRPYOnA-7FZ-YNZjRJ2DHuJsfUIE", |
|
"test": "https://drive.google.com/uc?export=download&id=1cy9FwDMB_U-js8P8u4IWolvNeIFkQVDh", |
|
}, |
|
"text": "https://drive.usercontent.google.com/download?id=1YC4P_IPSo1AsEwm5Z_4GBjDdwCbvokxX&export=download&authuser=0&confirm=t&uuid=36aa95f5-e1b6-43c1-a34f-754d14d8b473&at=APZUnTWD7fwarBs4ZVRy_QdKbDXi%3A1709478240158", |
|
} |
|
|
|
|
|
|
|
_SUPPORTED_TASKS = [] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoWiki(datasets.GeneratorBasedBuilder): |
|
"""IndoWiki knowledge base dataset from https://github.com/IgoRamli/IndoWiki""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_inductive_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"ent1": datasets.Value("string"), |
|
"ent2": datasets.Value("string"), |
|
"ent1_text": datasets.Value("string"), |
|
"ent2_text": datasets.Value("string"), |
|
"relation": datasets.Value("string"), |
|
} |
|
) |
|
|
|
else: |
|
raise NotImplementedError() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
if "inductive" in self.config.name: |
|
setting = "inductive" |
|
data_paths = { |
|
"inductive": { |
|
"train": Path(dl_manager.download_and_extract(_URLS["inductive"]["train"])), |
|
"valid": Path(dl_manager.download_and_extract(_URLS["inductive"]["valid"])), |
|
"test": Path(dl_manager.download_and_extract(_URLS["inductive"]["test"])), |
|
}, |
|
"text": Path(dl_manager.download_and_extract(_URLS["text"])), |
|
} |
|
else: |
|
setting = "transductive" |
|
data_paths = { |
|
"transductive": { |
|
"train": Path(dl_manager.download_and_extract(_URLS["transductive"]["train"])), |
|
"valid": Path(dl_manager.download_and_extract(_URLS["transductive"]["valid"])), |
|
"test": Path(dl_manager.download_and_extract(_URLS["transductive"]["test"])), |
|
}, |
|
"text": Path(dl_manager.download_and_extract(_URLS["text"])), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"triplets_filepath": data_paths[setting]["train"], |
|
"text_filepath": data_paths["text"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"triplets_filepath": data_paths[setting]["test"], |
|
"text_filepath": data_paths["text"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"triplets_filepath": data_paths[setting]["valid"], |
|
"text_filepath": data_paths["text"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, triplets_filepath: Path, text_filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
with open(triplets_filepath, "r", encoding="utf-8") as triplets_file: |
|
triplets_data = triplets_file.readlines() |
|
triplets_data = [s.strip("\n").split("\t") for s in triplets_data] |
|
|
|
|
|
with open(text_filepath, "r", encoding="utf-8") as text_file: |
|
text_data = text_file.readlines() |
|
|
|
text_dict = {s.split("\t")[0]: s.split("\t")[1].strip("\n") for s in text_data} |
|
|
|
num_sample = len(triplets_data) |
|
|
|
for i in range(num_sample): |
|
if self.config.schema == "source": |
|
example = { |
|
"id": str(i), |
|
"ent1": triplets_data[i][0], |
|
"ent2": triplets_data[i][2], |
|
"ent1_text": text_dict[triplets_data[i][0]], |
|
"ent2_text": text_dict[triplets_data[i][2]], |
|
"relation": triplets_data[i][1], |
|
} |
|
|
|
yield i, example |
|
|