|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" IndQNER Dataset """ |
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from nusacrowd.utils import schemas |
|
from nusacrowd.utils.common_parser import load_conll_data |
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@misc{, |
|
author = {Ria Hari Gusmita, Asep Fajar Firmansyah, Khodijah Khuliyah}, |
|
title = {{IndQNER: a NER Benchmark Dataset on Indonesian Translation of Quran}}, |
|
url = {https://github.com/dice-group/IndQNER}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "IndQNER" |
|
_DESCRIPTION = """\ |
|
IndQNER is a NER dataset created by manually annotating the Indonesian translation of Quran text. |
|
The dataset contains 18 named entity categories as follow: |
|
"Allah": Allah (including synonim of Allah such as Yang maha mengetahui lagi mahabijaksana) |
|
"Throne": Throne of Allah (such as 'Arasy) |
|
"Artifact": Artifact (such as Ka'bah, Baitullah) |
|
"AstronomicalBody": Astronomical body (such as bumi, matahari) |
|
"Event": Event (such as hari akhir, kiamat) |
|
"HolyBook": Holy book (such as AlQur'an) |
|
"Language": Language (such as bahasa Arab |
|
"Angel": Angel (such as Jibril, Mikail) |
|
"Person": Person (such as Bani Israil, Fir'aun) |
|
"Messenger": Messenger (such as Isa, Muhammad, Musa) |
|
"Prophet": Prophet (such as Adam, Sulaiman) |
|
"AfterlifeLocation": Afterlife location (such as Jahanam, Jahim, Padang Mahsyar) |
|
"GeographicalLocation": Geographical location (such as Sinai, negeru Babilonia) |
|
"Color": Color (such as kuning tua) |
|
"Religion": Religion (such as Islam, Yahudi, Nasrani) |
|
"Food": Food (such as manna, salwa) |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/dice-group/IndQNER" |
|
_LICENSE = "Unknown" |
|
_URLs = { |
|
"train": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/train.txt", |
|
"validation": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/dev.txt", |
|
"test": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/test.txt", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class IndqnerDataset(datasets.GeneratorBasedBuilder): |
|
"""IndQNER is an Named Entity Recognition benchmark dataset on a niche domain i.e. Indonesian Translation of Quran.""" |
|
|
|
label_classes = [ |
|
"B-Allah", |
|
"B-Throne", |
|
"B-Artifact", |
|
"B-AstronomicalBody", |
|
"B-Event", |
|
"B-HolyBook", |
|
"B-Language", |
|
"B-Angel", |
|
"B-Person", |
|
"B-Messenger", |
|
"B-Prophet", |
|
"B-AfterlifeLocation", |
|
"B-GeographicalLocation", |
|
"B-Color", |
|
"B-Religion", |
|
"B-Food", |
|
"I-Allah", |
|
"I-Throne", |
|
"I-Artifact", |
|
"I-AstronomicalBody", |
|
"I-Event", |
|
"I-HolyBook", |
|
"I-Language", |
|
"I-Angel", |
|
"I-Person", |
|
"I-Messenger", |
|
"I-Prophet", |
|
"I-AfterlifeLocation", |
|
"I-GeographicalLocation", |
|
"I-Color", |
|
"I-Religion", |
|
"I-Food", |
|
"O", |
|
] |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="indqner_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="NER dataset from Indonesian translation Quran source schema", |
|
schema="source", |
|
subset_id="indqner", |
|
), |
|
NusantaraConfig( |
|
name="indqner_nusantara_seq_label", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="NER dataset from Indonesian translation Quran Nusantara schema", |
|
schema="nusantara_seq_label", |
|
subset_id="indqner", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indqner_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]}) |
|
elif self.config.schema == "nusantara_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"])) |
|
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"])) |
|
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"])) |
|
data_files = { |
|
"train": train_tsv_path, |
|
"validation": validation_tsv_path, |
|
"test": test_tsv_path, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_files["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
conll_dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for index, row in enumerate(conll_dataset): |
|
ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]} |
|
yield index, ex |
|
elif self.config.schema == "nusantara_seq_label": |
|
for index, row in enumerate(conll_dataset): |
|
ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]} |
|
yield index, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|