indqner / indqner.py
holylovenia's picture
Upload indqner.py with huggingface_hub
d50c885
raw
history blame
6.63 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" IndQNER Dataset """
from pathlib import Path
from typing import List
import datasets
from nusacrowd.utils import schemas
from nusacrowd.utils.common_parser import load_conll_data
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@misc{,
author = {Ria Hari Gusmita, Asep Fajar Firmansyah, Khodijah Khuliyah},
title = {{IndQNER: a NER Benchmark Dataset on Indonesian Translation of Quran}},
url = {https://github.com/dice-group/IndQNER},
year = {2022}
}
"""
_LOCAL = False
_LANGUAGES = ["ind"]
_DATASETNAME = "IndQNER"
_DESCRIPTION = """\
IndQNER is a NER dataset created by manually annotating the Indonesian translation of Quran text.
The dataset contains 18 named entity categories as follow:
"Allah": Allah (including synonim of Allah such as Yang maha mengetahui lagi mahabijaksana)
"Throne": Throne of Allah (such as 'Arasy)
"Artifact": Artifact (such as Ka'bah, Baitullah)
"AstronomicalBody": Astronomical body (such as bumi, matahari)
"Event": Event (such as hari akhir, kiamat)
"HolyBook": Holy book (such as AlQur'an)
"Language": Language (such as bahasa Arab
"Angel": Angel (such as Jibril, Mikail)
"Person": Person (such as Bani Israil, Fir'aun)
"Messenger": Messenger (such as Isa, Muhammad, Musa)
"Prophet": Prophet (such as Adam, Sulaiman)
"AfterlifeLocation": Afterlife location (such as Jahanam, Jahim, Padang Mahsyar)
"GeographicalLocation": Geographical location (such as Sinai, negeru Babilonia)
"Color": Color (such as kuning tua)
"Religion": Religion (such as Islam, Yahudi, Nasrani)
"Food": Food (such as manna, salwa)
"""
_HOMEPAGE = "https://github.com/dice-group/IndQNER"
_LICENSE = "Unknown"
_URLs = {
"train": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/train.txt",
"validation": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/dev.txt",
"test": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/test.txt",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class IndqnerDataset(datasets.GeneratorBasedBuilder):
"""IndQNER is an Named Entity Recognition benchmark dataset on a niche domain i.e. Indonesian Translation of Quran."""
label_classes = [
"B-Allah",
"B-Throne",
"B-Artifact",
"B-AstronomicalBody",
"B-Event",
"B-HolyBook",
"B-Language",
"B-Angel",
"B-Person",
"B-Messenger",
"B-Prophet",
"B-AfterlifeLocation",
"B-GeographicalLocation",
"B-Color",
"B-Religion",
"B-Food",
"I-Allah",
"I-Throne",
"I-Artifact",
"I-AstronomicalBody",
"I-Event",
"I-HolyBook",
"I-Language",
"I-Angel",
"I-Person",
"I-Messenger",
"I-Prophet",
"I-AfterlifeLocation",
"I-GeographicalLocation",
"I-Color",
"I-Religion",
"I-Food",
"O",
]
BUILDER_CONFIGS = [
NusantaraConfig(
name="indqner_source",
version=datasets.Version(_SOURCE_VERSION),
description="NER dataset from Indonesian translation Quran source schema",
schema="source",
subset_id="indqner",
),
NusantaraConfig(
name="indqner_nusantara_seq_label",
version=datasets.Version(_SOURCE_VERSION),
description="NER dataset from Indonesian translation Quran Nusantara schema",
schema="nusantara_seq_label",
subset_id="indqner",
),
]
DEFAULT_CONFIG_NAME = "indqner_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]})
elif self.config.schema == "nusantara_seq_label":
features = schemas.seq_label_features(self.label_classes)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
data_files = {
"train": train_tsv_path,
"validation": validation_tsv_path,
"test": test_tsv_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath: Path):
conll_dataset = load_conll_data(filepath)
if self.config.schema == "source":
for index, row in enumerate(conll_dataset):
ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]}
yield index, ex
elif self.config.schema == "nusantara_seq_label":
for index, row in enumerate(conll_dataset):
ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]}
yield index, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")