Datasets:

Languages:
Indonesian
ArXiv:
kawat / kawat.py
holylovenia's picture
Upload kawat.py with huggingface_hub
1a8b87f
raw
history blame
5.95 kB
import os
from pathlib import Path
from typing import Dict, List, Tuple
from nusacrowd.utils.constants import Tasks
from nusacrowd.utils import schemas
import datasets
import json
from nusacrowd.utils.configs import NusantaraConfig
_CITATION = """\
@article{kurniawan2019,
title={KaWAT: A Word Analogy Task Dataset for Indonesian},
url={http://arxiv.org/abs/1906.09912},
journal={arXiv:1906.09912 [cs]},
author={Kurniawan, Kemal},
year={2019},
month={Jun}
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "kawat"
_DESCRIPTION = """\
We introduced KaWAT (Kata Word Analogy Task), a new word analogy task dataset for Indonesian.
We evaluated on it several existing pretrained Indonesian word embeddings and embeddings trained on Indonesian online news corpus.
We also tested them on two downstream tasks and found that pretrained word embeddings helped either by reducing the training epochs
or yielding significant performance gains.
"""
_HOMEPAGE = "https://github.com/kata-ai/kawat"
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0"
_URLS = {
_DATASETNAME: "https://raw.githubusercontent.com/kata-ai/kawat/master/{}/{}",
}
_SUPPORTED_TASKS = [Tasks.WORD_ANALOGY]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
_PATH_FILE = [
{
"folder": "semantic",
"file": [
"antonyms.txt",
"country-capitals.txt",
"country-currencies.txt",
"gender-specific-words.txt",
"measure-words.txt",
"province-capitals.txt"
]
},
{
"folder": "syntax",
"file": [
"nouns.txt",
"plurals.txt",
"reduplications.txt",
"verbs.txt"
]
}
]
class Kawat(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
BUILDER_CONFIGS = [
NusantaraConfig(
name="kawat_source",
version=SOURCE_VERSION,
description="Kawat source schema",
schema="source",
subset_id="kawat",
),
NusantaraConfig(
name="kawat_nusantara_t2t",
version=NUSANTARA_VERSION,
description="Kawat Nusantara schema",
schema="nusantara_t2t",
subset_id="kawat",
),
]
DEFAULT_CONFIG_NAME = "kawat_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_1_name": datasets.Value("string"),
"text_2": datasets.Value("string"),
"text_2_name": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
datas = []
num = 0
for each_path_file in _PATH_FILE:
for each_file in each_path_file["file"]:
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME].format(each_path_file['folder'], each_file))
parsed_lines = open(data_dir, "r").readlines()
titles = parsed_lines[0].split("\t")
num_columns = len(titles)
titles[num_columns-1] = titles[num_columns-1][:-1]
for i in range(1, len(parsed_lines)):
words = parsed_lines[i].split("\t")
words[num_columns-1] = words[num_columns-1][:-1]
for j in range(1, num_columns):
if words[j] != "-":
datas.append({
"id": str(num),
"text_1": words[0],
"text_1_name": titles[0],
"text_2": words[j],
"text_2_name": titles[j],
})
num+=1
with open(data_dir, 'w') as f:
f.write(json.dumps(datas))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
data = json.load(open(filepath, "r"))
if self.config.schema == "source":
key = 0
for each_data in data:
example = {
"id": each_data["id"],
"text_1": each_data["text_1"],
"text_1_name": each_data["text_1_name"],
"text_2": each_data["text_2"],
"text_2_name": each_data["text_2_name"],
}
yield key, example
key+=1
elif self.config.schema == "nusantara_t2t":
key = 0
for each_data in data:
example = {
"id": each_data["id"],
"text_1": each_data["text_1"],
"text_1_name": each_data["text_1_name"],
"text_2": each_data["text_2"],
"text_2_name": each_data["text_2_name"],
}
yield key, example
key+=1