|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
from nusacrowd.utils.constants import Tasks |
|
from nusacrowd.utils import schemas |
|
|
|
import datasets |
|
import json |
|
|
|
from nusacrowd.utils.configs import NusantaraConfig |
|
|
|
_CITATION = """\ |
|
@article{kurniawan2019, |
|
title={KaWAT: A Word Analogy Task Dataset for Indonesian}, |
|
url={http://arxiv.org/abs/1906.09912}, |
|
journal={arXiv:1906.09912 [cs]}, |
|
author={Kurniawan, Kemal}, |
|
year={2019}, |
|
month={Jun} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "kawat" |
|
|
|
_DESCRIPTION = """\ |
|
We introduced KaWAT (Kata Word Analogy Task), a new word analogy task dataset for Indonesian. |
|
We evaluated on it several existing pretrained Indonesian word embeddings and embeddings trained on Indonesian online news corpus. |
|
We also tested them on two downstream tasks and found that pretrained word embeddings helped either by reducing the training epochs |
|
or yielding significant performance gains. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/kata-ai/kawat" |
|
|
|
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/kata-ai/kawat/master/{}/{}", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.WORD_ANALOGY] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
_PATH_FILE = [ |
|
{ |
|
"folder": "semantic", |
|
"file": [ |
|
"antonyms.txt", |
|
"country-capitals.txt", |
|
"country-currencies.txt", |
|
"gender-specific-words.txt", |
|
"measure-words.txt", |
|
"province-capitals.txt" |
|
] |
|
}, |
|
{ |
|
"folder": "syntax", |
|
"file": [ |
|
"nouns.txt", |
|
"plurals.txt", |
|
"reduplications.txt", |
|
"verbs.txt" |
|
] |
|
} |
|
] |
|
|
|
class Kawat(datasets.GeneratorBasedBuilder): |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="kawat_source", |
|
version=SOURCE_VERSION, |
|
description="Kawat source schema", |
|
schema="source", |
|
subset_id="kawat", |
|
), |
|
NusantaraConfig( |
|
name="kawat_nusantara_t2t", |
|
version=NUSANTARA_VERSION, |
|
description="Kawat Nusantara schema", |
|
schema="nusantara_t2t", |
|
subset_id="kawat", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "kawat_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_1_name": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"text_2_name": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
datas = [] |
|
|
|
num = 0 |
|
|
|
for each_path_file in _PATH_FILE: |
|
for each_file in each_path_file["file"]: |
|
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME].format(each_path_file['folder'], each_file)) |
|
|
|
parsed_lines = open(data_dir, "r").readlines() |
|
|
|
titles = parsed_lines[0].split("\t") |
|
|
|
num_columns = len(titles) |
|
|
|
titles[num_columns-1] = titles[num_columns-1][:-1] |
|
|
|
for i in range(1, len(parsed_lines)): |
|
words = parsed_lines[i].split("\t") |
|
|
|
words[num_columns-1] = words[num_columns-1][:-1] |
|
|
|
for j in range(1, num_columns): |
|
if words[j] != "-": |
|
datas.append({ |
|
"id": str(num), |
|
"text_1": words[0], |
|
"text_1_name": titles[0], |
|
"text_2": words[j], |
|
"text_2_name": titles[j], |
|
}) |
|
num+=1 |
|
|
|
with open(data_dir, 'w') as f: |
|
f.write(json.dumps(datas)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
data = json.load(open(filepath, "r")) |
|
|
|
if self.config.schema == "source": |
|
key = 0 |
|
for each_data in data: |
|
example = { |
|
"id": each_data["id"], |
|
"text_1": each_data["text_1"], |
|
"text_1_name": each_data["text_1_name"], |
|
"text_2": each_data["text_2"], |
|
"text_2_name": each_data["text_2_name"], |
|
} |
|
yield key, example |
|
key+=1 |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
key = 0 |
|
for each_data in data: |
|
example = { |
|
"id": each_data["id"], |
|
"text_1": each_data["text_1"], |
|
"text_1_name": each_data["text_1_name"], |
|
"text_2": each_data["text_2"], |
|
"text_2_name": each_data["text_2_name"], |
|
} |
|
yield key, example |
|
key+=1 |
|
|