|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The khPOS Corpus (Khmer POS Corpus) is a 12,000 sentences (25,626 words) manually word segmented and POS tagged corpus |
|
developed for Khmer language NLP research and developments. We collected Khmer sentences from websites that include |
|
various area such as economics, news, politics. Moreover it is also contained some student list and voter list of |
|
national election committee of Cambodia. The average number of words per sentence in the whole corpus is 10.75. |
|
Here, some symbols such as "។" (Khmer sign Khan), "៖" (Khmer sign Camnuc pii kuuh), "-", "?", "[", "]" etc. also |
|
counted as words. The shortest sentence contained only 1 word and longest sentence contained 169 words. This dataset contains |
|
A validation set and a test set, each containing 1000 sentences. |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_CITATION = """\ |
|
@inproceedings{kyaw2017comparison, |
|
title={Comparison of Six POS Tagging Methods on 12K Sentences Khmer Language POS Tagged Corpus}, |
|
author={Ye Kyaw Thu and Vichet Chea and Yoshinori Sagisaka}, |
|
booktitle={Proceedings of the first Regional Conference on Optical character recognition and Natural language processing technologies for ASEAN languages (ONA 2017)}, |
|
year={2017}, |
|
month={December 7-8}, |
|
address={Phnom Penh, Cambodia} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "khpos" |
|
|
|
_DESCRIPTION = """\ |
|
The khPOS Corpus (Khmer POS Corpus) is a 12,000 sentences (25,626 words) manually word segmented and POS tagged corpus |
|
developed for Khmer language NLP research and developments. We collected Khmer sentences from websites that include |
|
various area such as economics, news, politics. Moreover it is also contained some student list and voter list of |
|
national election committee of Cambodia. The average number of words per sentence in the whole corpus is 10.75. |
|
Here, some symbols such as "។" (Khmer sign Khan), "៖" (Khmer sign Camnuc pii kuuh), "-", "?", "[", "]" etc. also |
|
counted as words. The shortest sentence contained only 1 word and longest sentence contained 169 words. This dataset contains |
|
A validation set and a test set, each containing 1000 sentences. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ye-kyaw-thu/khPOS/tree/master" |
|
|
|
_LANGUAGES = ['khm'] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
'train': "https://raw.githubusercontent.com/ye-kyaw-thu/khPOS/master/corpus-draft-ver-1.0/data/after-replace/train.all2", |
|
'validation': "https://raw.githubusercontent.com/ye-kyaw-thu/khPOS/master/corpus-draft-ver-1.0/data/OPEN-TEST", |
|
'test': "https://raw.githubusercontent.com/ye-kyaw-thu/khPOS/master/corpus-draft-ver-1.0/data/CLOSE-TEST" |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.POS_TAGGING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class KhPOS(datasets.GeneratorBasedBuilder): |
|
"""\ |
|
This datasets contain 12000 sentences (25626 words) for the Khmer language. |
|
There are 24 POS tags and their description can be found at https://github.com/ye-kyaw-thu/khPOS/tree/master. |
|
The used Khmer Tokenizer can be found in the above github repository as well. This dataset contains |
|
A validation set and a test set, each containing 1000 sentences. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="khpos_source", |
|
version=SOURCE_VERSION, |
|
description="khpos source schema", |
|
schema="source", |
|
subset_id="khpos", |
|
), |
|
SEACrowdConfig( |
|
name="khpos_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description="khpos SEACrowd schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="khpos", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "khpos_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({ |
|
"id" : datasets.Value("string"), |
|
"tokens" : datasets.Sequence(datasets.Value("string")), |
|
|
|
"pos_tags": datasets.Sequence(datasets.features.ClassLabel( |
|
names = [ |
|
'AB', 'AUX', 'CC', 'CD', |
|
'DBL', 'DT', 'ETC', 'IN', |
|
'JJ', 'KAN', 'M', 'NN', |
|
'PA', 'PN', 'PRO', 'QT', |
|
'RB', 'RPN', 'SYM', 'UH', |
|
'VB', 'VB_JJ', 'VCOM' |
|
] |
|
)) |
|
}) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label.features([ |
|
'AB', 'AUX', 'CC', 'CD', |
|
'DBL', 'DT', 'ETC', 'IN', |
|
'JJ', 'KAN', 'M', 'NN', |
|
'PA', 'PN', 'PRO', 'QT', |
|
'RB', 'RPN', 'SYM', 'UH', |
|
'VB', 'VB_JJ', 'VCOM' |
|
]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME]['train'] |
|
path = dl_manager.download_and_extract(urls) |
|
|
|
dev_url = _URLS[_DATASETNAME]['validation'] |
|
dev_path = dl_manager.download_and_extract(dev_url) |
|
|
|
test_url = _URLS[_DATASETNAME]['test'] |
|
test_path = dl_manager.download_and_extract(test_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dev_path, |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, encoding="utf-8") as file: |
|
counter = 0 |
|
for line in file: |
|
if line.strip() != "": |
|
groups = line.split(" ") |
|
tokens = [] |
|
pos_tags = [] |
|
for group in groups: |
|
token, pos_tag = group.split("/") |
|
tokens.append(token) |
|
pos_tags.append(pos_tag) |
|
if self.config.schema == "source": |
|
yield ( |
|
counter, |
|
{ |
|
"id" : str(counter), |
|
"tokens" : tokens, |
|
"pos_tags": pos_tags |
|
} |
|
) |
|
counter += 1 |
|
elif self.config.schema == "seacrowd_seq_label": |
|
yield ( |
|
counter, |
|
{ |
|
"id" : str(counter), |
|
"tokens": tokens, |
|
"labels": pos_tags |
|
} |
|
) |
|
counter += 1 |
|
|