|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@misc{ |
|
research, |
|
title={indonesian-nlp/librivox-indonesia · datasets at hugging face}, |
|
url={https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia}, |
|
author={Indonesian-nlp} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "librivox_indonesia" |
|
_DESCRIPTION = """\ |
|
The LibriVox Indonesia dataset consists of MP3 audio and a corresponding text file we generated from the public domain audiobooks LibriVox. |
|
We collected only languages in Indonesia for this dataset. |
|
The original LibriVox audiobooks or sound files' duration varies from a few minutes to a few hours. |
|
Each audio file in the speech dataset now lasts from a few seconds to a maximum of 20 seconds. |
|
We converted the audiobooks to speech datasets using the forced alignment software we developed. |
|
It supports multilingual, including low-resource languages, such as Acehnese, Balinese, or Minangkabau. |
|
We can also use it for other languages without additional work to train the model. |
|
The dataset currently consists of 8 hours in 7 languages from Indonesia. |
|
We will add more languages or audio files as we collect them. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/indonesian-nlp/librivox-indonesia" |
|
|
|
_LICENSE = "CC0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia/resolve/main/data", |
|
} |
|
_LANGUAGES = {"ind", "sun", "jav", "min", "bug", "ban", "ace"} |
|
_LANG_CODE = { |
|
"ind": ["ind", "indonesian"], |
|
"sun": ["sun", "sundanese"], |
|
"jav": ["jav", "javanese"], |
|
"min": ["min", "minangkabau"], |
|
"bug": ["bug", "bugisnese"], |
|
"ban": ["bal", "balinese"], |
|
"ace": ["ace", "acehnese"] |
|
} |
|
_LOCAL = False |
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class LibrivoxIndonesia(datasets.GeneratorBasedBuilder): |
|
""" |
|
Librivox-indonesia is a speech-to-text dataset in 7 languages available in Indonesia. |
|
The default dataloader contains all languages, while the other available dataloaders contain a designated language. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="librivox_indonesia_source", |
|
version=_SOURCE_VERSION, |
|
description="Librivox-Indonesia source schema for all languages", |
|
schema="source", |
|
subset_id="librivox_indonesia", |
|
)] + [ |
|
SEACrowdConfig( |
|
name="librivox_indonesia_{lang}_source".format(lang=lang), |
|
version=_SOURCE_VERSION, |
|
description="Librivox-Indonesia source schema for {lang} languages".format(lang=_LANG_CODE[lang][1]), |
|
schema="source", |
|
subset_id="librivox_indonesia_{lang}".format(lang=lang), |
|
) for lang in _LANGUAGES] + [ |
|
SEACrowdConfig( |
|
name="librivox_indonesia_seacrowd_sptext", |
|
version=_SEACROWD_VERSION, |
|
description="Librivox-Indonesia Nusantara schema for all languages", |
|
schema="seacrowd_sptext", |
|
subset_id="librivox_indonesia", |
|
)] + [ |
|
SEACrowdConfig( |
|
name="librivox_indonesia_{lang}_seacrowd_sptext".format(lang=lang), |
|
version=_SEACROWD_VERSION, |
|
description="Librivox-Indonesia Nusantara schema for {lang} languages".format(lang=_LANG_CODE[lang][1]), |
|
schema="seacrowd_sptext", |
|
subset_id="librivox_indonesia_{lang}".format(lang=lang), |
|
)for lang in _LANGUAGES] |
|
|
|
DEFAULT_CONFIG_NAME = "librivox_indonesia_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"reader": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=44100) |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
|
|
audio_path = {} |
|
local_extracted_archive = {} |
|
metadata_path = {} |
|
splits = ["train", "test"] |
|
for split in splits: |
|
audio_path[split] = dl_manager.download(os.path.join(urls, "audio_{split}.tgz".format(split=split))) |
|
local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None |
|
metadata_path[split] = dl_manager.download_and_extract( |
|
os.path.join(urls, "metadata_{split}.csv.gz".format(split=split)) |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive["train"], |
|
"audio_path": dl_manager.iter_archive(audio_path["train"]), |
|
"metadata_path": metadata_path["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive["test"], |
|
"audio_path": dl_manager.iter_archive(audio_path["test"]), |
|
"metadata_path": metadata_path["test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, local_extracted_archive: Path, audio_path, metadata_path: Path, split: str) -> Tuple[int, Dict]: |
|
df = pd.read_csv( |
|
metadata_path, |
|
encoding="utf-8" |
|
) |
|
lang = self.config.subset_id.split("_")[-1] |
|
if lang != "indonesia": |
|
lang = _LANG_CODE[lang][0] |
|
path_to_audio = "librivox-indonesia" |
|
metadata = {} |
|
for id, row in df.iterrows(): |
|
if lang == row["language"] or lang == "indonesia": |
|
path = os.path.join(path_to_audio, row["path"]) |
|
metadata[path] = row |
|
metadata[path]["id"] = id |
|
|
|
for path, f in audio_path: |
|
if path in metadata: |
|
row = metadata[path] |
|
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path |
|
if self.config.schema == "source": |
|
yield row["id"], { |
|
"path": path, |
|
"language": row["language"], |
|
"reader": row["reader"], |
|
"sentence": row["sentence"], |
|
"audio": path, |
|
} |
|
elif self.config.schema == "seacrowd_sptext": |
|
yield row["id"], { |
|
"id": row["id"], |
|
"speaker_id": row["reader"], |
|
"path": path, |
|
"audio": path, |
|
"text": row["sentence"], |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": None, |
|
} |
|
} |
|
|