File size: 7,517 Bytes
ae158be
 
 
 
 
 
0ce8494
 
 
ae158be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce8494
ae158be
 
 
 
 
 
 
0ce8494
ae158be
 
 
 
0ce8494
ae158be
 
 
 
 
 
 
 
 
0ce8494
 
 
ae158be
0ce8494
ae158be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce8494
ae158be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce8494
ae158be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import json

_CITATION = """\
@inproceedings{koto2020liputan6,
  title={Liputan6: A Large-scale Indonesian Dataset for Text Summarization},
  author={Koto, Fajri and Lau, Jey Han and Baldwin, Timothy},
  booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
  pages={598--608},
  year={2020}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "liputan6"

_DESCRIPTION = """
A large-scale Indonesian summarization dataset consisting of harvested articles from Liputan6.com, an online news portal, resulting in 215,827 document-summary pairs.
"""

_HOMEPAGE = "https://github.com/fajri91/sum_liputan6"

_LICENSE = "CC-BY-SA 4.0"

_URLS = {
    _DATASETNAME: "https://storage.googleapis.com/babert-pretraining/IndoNLG_finals/downstream_task/downstream_task_datasets.zip",
}

_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class Liputan6(datasets.GeneratorBasedBuilder):
    """A large-scale Indonesian summarization dataset consisting of harvested articles from Liputan6.com, an online news portal, resulting in 215,827 document-summary pairs."""


    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    
    TYPE_LIST = ['canonical', 'xtreme']
    BUILDER_CONFIGS = (
        [
            SEACrowdConfig(
                name="liputan6_{fold_name}_source".format(fold_name=i),
                version=_SOURCE_VERSION,
                description="liputan6 source schema",
                schema="source",
                subset_id="liputan6_{fold_name}".format(fold_name=i),
            ) for i in TYPE_LIST
        ]
        +
        [
            SEACrowdConfig(
            name="liputan6_{fold_name}_seacrowd_t2t".format(fold_name=i),
            version=_SEACROWD_VERSION,
            description="liputan6 Nusantara schema",
            schema="seacrowd_t2t",
            subset_id="liputan6_{fold_name}".format(fold_name=i),
        ) for i in TYPE_LIST
        ]
    )
    DEFAULT_CONFIG_NAME = "liputan6_canonical_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
               {
                   "document": datasets.Value("string"),
                   "id": datasets.Value("string"),
                   "summary": datasets.Value("string")
               }
            )

        elif self.config.schema == "seacrowd_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _get_fold_name(self):
        subset_id = self.config.subset_id
        idx_fold = subset_id.index("_")
        file_id = subset_id[(idx_fold + 1):]
        return file_id

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        fold_name = self._get_fold_name()

        urls = _URLS[_DATASETNAME]

        data_dir = Path(dl_manager.download_and_extract(urls))

        location = {
            "train": "IndoNLG_downstream_tasks/liputan6/{fold_name}_train.json",
            "test": "IndoNLG_downstream_tasks/liputan6/{fold_name}_test.json",
            "dev": "IndoNLG_downstream_tasks/liputan6/{fold_name}_dev.json"
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,

                gen_kwargs={
                    "filepath": os.path.join(data_dir, location["train"].format(fold_name=fold_name)),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, location["test"].format(fold_name=fold_name)),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, location["dev"].format(fold_name=fold_name)),
                    "split": "dev",
                },
            ),
        ]
    

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:

        if self.config.schema == "source":
            
            if "xtreme_train.json" in filepath:
                with open(filepath) as f:
                    lines = f.read().split("{")
                    LEN = len(lines)
                    for i, line in enumerate(lines):
                        if 0 < i < LEN-1:
                            idx = line.index("}")
                            line = "{"+line[:idx+1]
                            each_data = json.loads(line)
                            ex = {
                                "id": each_data["id"],
                                "document": each_data['text'],
                                "summary": each_data['label']
                            }
                            yield each_data["id"], ex

            else:
                with open(filepath) as f:
                    data =  json.load(f)
                    for i, each_data in enumerate(data):
                        ex = {
                            "id": each_data["id"],
                            "document": each_data['text'],
                            "summary": each_data['label']
                        }
                        yield each_data["id"], ex

        elif self.config.schema == "seacrowd_t2t":
            if "xtreme_train.json" in filepath:
                with open(filepath) as f:
                    lines = f.read().split("{")
                    LEN = len(lines)
                    for i, line in enumerate(lines):
                        if 0 < i < LEN-1:
                            idx = line.index("}")
                            line = "{"+line[:idx+1]
                            each_data = json.loads(line)
                            ex = {
                                "id": each_data["id"],
                                "text_1": each_data['text'],
                                "text_2": each_data['label'],
                                "text_1_name": "document",
                                "text_2_name": "summary"
                            }
                            yield each_data["id"], ex

            else:
                with open(filepath) as f:
                    data =  json.load(f)
                    for i, each_data in enumerate(data):
                        ex = {
                            "id": each_data["id"],
                            "text_1": each_data['text'],
                            "text_2": each_data['label'],
                            "text_1_name": "document",
                            "text_2_name": "summary"
                        }
                        yield each_data["id"], ex