liputan6 / liputan6.py
holylovenia's picture
Upload liputan6.py with huggingface_hub
ae158be
raw
history blame
7.53 kB
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
from nusacrowd.utils import schemas
import json
_CITATION = """\
@inproceedings{koto2020liputan6,
title={Liputan6: A Large-scale Indonesian Dataset for Text Summarization},
author={Koto, Fajri and Lau, Jey Han and Baldwin, Timothy},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
pages={598--608},
year={2020}
}
"""
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "liputan6"
_DESCRIPTION = """
A large-scale Indonesian summarization dataset consisting of harvested articles from Liputan6.com, an online news portal, resulting in 215,827 document-summary pairs.
"""
_HOMEPAGE = "https://github.com/fajri91/sum_liputan6"
_LICENSE = "CC-BY-SA 4.0"
_URLS = {
_DATASETNAME: "https://storage.googleapis.com/babert-pretraining/IndoNLG_finals/downstream_task/downstream_task_datasets.zip",
}
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class Liputan6(datasets.GeneratorBasedBuilder):
"""A large-scale Indonesian summarization dataset consisting of harvested articles from Liputan6.com, an online news portal, resulting in 215,827 document-summary pairs."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
TYPE_LIST = ['canonical', 'xtreme']
BUILDER_CONFIGS = (
[
NusantaraConfig(
name="liputan6_{fold_name}_source".format(fold_name=i),
version=_SOURCE_VERSION,
description="liputan6 source schema",
schema="source",
subset_id="liputan6_{fold_name}".format(fold_name=i),
) for i in TYPE_LIST
]
+
[
NusantaraConfig(
name="liputan6_{fold_name}_nusantara_t2t".format(fold_name=i),
version=_NUSANTARA_VERSION,
description="liputan6 Nusantara schema",
schema="nusantara_t2t",
subset_id="liputan6_{fold_name}".format(fold_name=i),
) for i in TYPE_LIST
]
)
DEFAULT_CONFIG_NAME = "liputan6_canonical_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document": datasets.Value("string"),
"id": datasets.Value("string"),
"summary": datasets.Value("string")
}
)
elif self.config.schema == "nusantara_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _get_fold_name(self):
subset_id = self.config.subset_id
idx_fold = subset_id.index("_")
file_id = subset_id[(idx_fold + 1):]
return file_id
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
fold_name = self._get_fold_name()
urls = _URLS[_DATASETNAME]
data_dir = Path(dl_manager.download_and_extract(urls))
location = {
"train": "IndoNLG_downstream_tasks/liputan6/{fold_name}_train.json",
"test": "IndoNLG_downstream_tasks/liputan6/{fold_name}_test.json",
"dev": "IndoNLG_downstream_tasks/liputan6/{fold_name}_dev.json"
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, location["train"].format(fold_name=fold_name)),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, location["test"].format(fold_name=fold_name)),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, location["dev"].format(fold_name=fold_name)),
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
if self.config.schema == "source":
if "xtreme_train.json" in filepath:
with open(filepath) as f:
lines = f.read().split("{")
LEN = len(lines)
for i, line in enumerate(lines):
if 0 < i < LEN-1:
idx = line.index("}")
line = "{"+line[:idx+1]
each_data = json.loads(line)
ex = {
"id": each_data["id"],
"document": each_data['text'],
"summary": each_data['label']
}
yield each_data["id"], ex
else:
with open(filepath) as f:
data = json.load(f)
for i, each_data in enumerate(data):
ex = {
"id": each_data["id"],
"document": each_data['text'],
"summary": each_data['label']
}
yield each_data["id"], ex
elif self.config.schema == "nusantara_t2t":
if "xtreme_train.json" in filepath:
with open(filepath) as f:
lines = f.read().split("{")
LEN = len(lines)
for i, line in enumerate(lines):
if 0 < i < LEN-1:
idx = line.index("}")
line = "{"+line[:idx+1]
each_data = json.loads(line)
ex = {
"id": each_data["id"],
"text_1": each_data['text'],
"text_2": each_data['label'],
"text_1_name": "document",
"text_2_name": "summary"
}
yield each_data["id"], ex
else:
with open(filepath) as f:
data = json.load(f)
for i, each_data in enumerate(data):
ex = {
"id": each_data["id"],
"text_1": each_data['text'],
"text_2": each_data['label'],
"text_1_name": "document",
"text_2_name": "summary"
}
yield each_data["id"], ex