|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
from nusacrowd.utils import schemas |
|
import json |
|
|
|
_CITATION = """\ |
|
@inproceedings{koto2020liputan6, |
|
title={Liputan6: A Large-scale Indonesian Dataset for Text Summarization}, |
|
author={Koto, Fajri and Lau, Jey Han and Baldwin, Timothy}, |
|
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, |
|
pages={598--608}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "liputan6" |
|
|
|
_DESCRIPTION = """ |
|
A large-scale Indonesian summarization dataset consisting of harvested articles from Liputan6.com, an online news portal, resulting in 215,827 document-summary pairs. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/fajri91/sum_liputan6" |
|
|
|
_LICENSE = "CC-BY-SA 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://storage.googleapis.com/babert-pretraining/IndoNLG_finals/downstream_task/downstream_task_datasets.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class Liputan6(datasets.GeneratorBasedBuilder): |
|
"""A large-scale Indonesian summarization dataset consisting of harvested articles from Liputan6.com, an online news portal, resulting in 215,827 document-summary pairs.""" |
|
|
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
TYPE_LIST = ['canonical', 'xtreme'] |
|
BUILDER_CONFIGS = ( |
|
[ |
|
NusantaraConfig( |
|
name="liputan6_{fold_name}_source".format(fold_name=i), |
|
version=_SOURCE_VERSION, |
|
description="liputan6 source schema", |
|
schema="source", |
|
subset_id="liputan6_{fold_name}".format(fold_name=i), |
|
) for i in TYPE_LIST |
|
] |
|
+ |
|
[ |
|
NusantaraConfig( |
|
name="liputan6_{fold_name}_nusantara_t2t".format(fold_name=i), |
|
version=_NUSANTARA_VERSION, |
|
description="liputan6 Nusantara schema", |
|
schema="nusantara_t2t", |
|
subset_id="liputan6_{fold_name}".format(fold_name=i), |
|
) for i in TYPE_LIST |
|
] |
|
) |
|
DEFAULT_CONFIG_NAME = "liputan6_canonical_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"document": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"summary": datasets.Value("string") |
|
} |
|
) |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _get_fold_name(self): |
|
subset_id = self.config.subset_id |
|
idx_fold = subset_id.index("_") |
|
file_id = subset_id[(idx_fold + 1):] |
|
return file_id |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
fold_name = self._get_fold_name() |
|
|
|
urls = _URLS[_DATASETNAME] |
|
|
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
|
|
location = { |
|
"train": "IndoNLG_downstream_tasks/liputan6/{fold_name}_train.json", |
|
"test": "IndoNLG_downstream_tasks/liputan6/{fold_name}_test.json", |
|
"dev": "IndoNLG_downstream_tasks/liputan6/{fold_name}_dev.json" |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, location["train"].format(fold_name=fold_name)), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, location["test"].format(fold_name=fold_name)), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, location["dev"].format(fold_name=fold_name)), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
|
|
if self.config.schema == "source": |
|
|
|
if "xtreme_train.json" in filepath: |
|
with open(filepath) as f: |
|
lines = f.read().split("{") |
|
LEN = len(lines) |
|
for i, line in enumerate(lines): |
|
if 0 < i < LEN-1: |
|
idx = line.index("}") |
|
line = "{"+line[:idx+1] |
|
each_data = json.loads(line) |
|
ex = { |
|
"id": each_data["id"], |
|
"document": each_data['text'], |
|
"summary": each_data['label'] |
|
} |
|
yield each_data["id"], ex |
|
|
|
else: |
|
with open(filepath) as f: |
|
data = json.load(f) |
|
for i, each_data in enumerate(data): |
|
ex = { |
|
"id": each_data["id"], |
|
"document": each_data['text'], |
|
"summary": each_data['label'] |
|
} |
|
yield each_data["id"], ex |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
if "xtreme_train.json" in filepath: |
|
with open(filepath) as f: |
|
lines = f.read().split("{") |
|
LEN = len(lines) |
|
for i, line in enumerate(lines): |
|
if 0 < i < LEN-1: |
|
idx = line.index("}") |
|
line = "{"+line[:idx+1] |
|
each_data = json.loads(line) |
|
ex = { |
|
"id": each_data["id"], |
|
"text_1": each_data['text'], |
|
"text_2": each_data['label'], |
|
"text_1_name": "document", |
|
"text_2_name": "summary" |
|
} |
|
yield each_data["id"], ex |
|
|
|
else: |
|
with open(filepath) as f: |
|
data = json.load(f) |
|
for i, each_data in enumerate(data): |
|
ex = { |
|
"id": each_data["id"], |
|
"text_1": each_data['text'], |
|
"text_2": each_data['label'], |
|
"text_1_name": "document", |
|
"text_2_name": "summary" |
|
} |
|
yield each_data["id"], ex |
|
|
|
|
|
|
|
|