File size: 6,433 Bytes
3705e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This template serves as a starting point for contributing a dataset to the SEACrowd Datahub repo.


Full documentation on writing dataset loading scripts can be found here:
https://huggingface.co/docs/datasets/add_dataset.html

To create a dataset loading script you will create a class and implement 3 methods:
  * `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object.
  * `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split.
  * `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`.

"""
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                      DEFAULT_SOURCE_VIEW_NAME, Tasks)

_CITATION = """\
@misc{MALINDO-parallel,
  title = "MALINDO-parallel",
  howpublished = "https://github.com/matbahasa/MALINDO_Parallel/blob/master/README.md",
  note = "Accessed: 2023-01-27",
}
"""

_DATASETNAME = "malindo_parallel"


_DESCRIPTION = """\
Teks ini adalah skrip video untuk Kampus Terbuka Universiti Bahasa Asing Tokyo pada tahun 2020. Tersedia parallel sentences dalam Bahasa Melayu/Indonesia dan Bahasa Jepang
"""


_HOMEPAGE = "https://github.com/matbahasa/MALINDO_Parallel/tree/master/OpenCampusTUFS"


_LANGUAGES = ["zlm", "jpn"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)


_LICENSE = "Creative Commons Attribution 4.0 (cc-by-4.0)" 


_LOCAL = False


_URLS = {
    _DATASETNAME: "https://raw.githubusercontent.com/matbahasa/MALINDO_Parallel/master/OpenCampusTUFS/OCTUFS2020.txt",
}


_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]  # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]


_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"



class MalindoParallelDataset(datasets.GeneratorBasedBuilder):
    """Data terjemahan bahasa Melayu/Indonesia"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)


    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="malindo_parallel_source",
            version=SOURCE_VERSION,
            description="malindo_parallel source schema",
            schema="source",
            subset_id="malindo_parallel",
        ),
        SEACrowdConfig(
            name="malindo_parallel_seacrowd_t2t",
            version=SEACROWD_VERSION,
            description="malindo_parallel SEACrowd schema",
            schema="seacrowd_t2t",
            subset_id="malindo_parallel",
        ),
    ]

    DEFAULT_CONFIG_NAME = "malindo_parallel_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string")})

        elif self.config.schema == "seacrowd_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,

                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:

        rows = []
        temp_cols = None
        with open(filepath) as file:
            while line := file.readline():
                if temp_cols is None:
                    cols = []
                    for col in line.split('\t'):
                        if len(col.strip('\n'))>0:
                            cols.append(col)
                    if len(cols) > 2:
                        correct_line = line.rstrip()
                        rows.append(correct_line)
                    else:
                        temp_cols = cols
                else:
                    temp_cols.append(line)
                    correct_line = "\t".join(temp_cols).rstrip()
                    temp_cols = None
                    rows.append(correct_line)

        if self.config.schema == "source":

            for i, row in enumerate(rows):
                t1idx = row.find("\t") + 1
                t2idx = row[t1idx:].find("\t")
                row_id = row[:t1idx]
                row_melayu = row[t1idx : t1idx + t2idx]
                row_japanese = row[t1idx + t2idx + 1 : -1]
                ex = {"id": row_id.rstrip(),
                      "text": row_melayu + "\t" + row_japanese}
                yield i, ex

        elif self.config.schema == "seacrowd_t2t":

            for i, row in enumerate(rows):
                t1idx = row.find("\t") + 1
                t2idx = row[t1idx:].find("\t")
                row_id = row[:t1idx]
                row_melayu = row[t1idx : t1idx + t2idx]
                row_japanese = row[t1idx + t2idx + 1 : -1]
                ex = {
                    "id": row_id.rstrip(),
                    "text_1": row_melayu,
                    "text_2": row_japanese,
                    "text_1_name": "zlm",
                    "text_2_name": "jpn",
                }
                yield i, ex