File size: 8,577 Bytes
148a9a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
Licenses, Tasks)
_CITATION = """\
@misc{zhang2022mdia,
title={MDIA: A Benchmark for Multilingual Dialogue Generation in 46 Languages},
author={Qingyu Zhang and Xiaoyu Shen and Ernie Chang and Jidong Ge and Pengke Chen},
year={2022},
eprint={2208.13078},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DATASETNAME = "mdia"
_DESCRIPTION = """\
This is a multilingual benchmark for dialogue generation containing real-life
Reddit conversations (parent and response comment pairs) in 46 languages,
including Indonesian, Tagalog and Vietnamese. English translations are also
provided for comments.
"""
_HOMEPAGE = "https://github.com/DoctorDream/mDIA"
_LANGUAGES = ["ind", "tgl", "vie"]
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
"raw": "https://github.com/DoctorDream/mDIA/raw/master/datasets/raw.zip",
"translated": "https://github.com/DoctorDream/mDIA/raw/master/datasets/translated.zip",
}
_SUPPORTED_TASKS = [Tasks.DIALOGUE_SYSTEM, Tasks.MACHINE_TRANSLATION] # DS, MT
_SEACROWD_SCHEMA = {task.value: f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS} # t2t
_SUBSETS = [
"ind_dialogue",
"ind_eng",
"tgl_dialogue",
"tgl_eng",
"vie_dialogue",
"vie_eng",
]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MdiaDataset(datasets.GeneratorBasedBuilder):
"""Multilingual benchmark for dialogue generation containing real-life Reddit conversations"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = []
for subset in _SUBSETS:
if "dialogue" in subset:
BUILDER_CONFIGS += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} {subset} source schema",
schema="source",
subset_id=subset,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA['DS']}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {subset} SEACrowd schema",
schema=_SEACROWD_SCHEMA["DS"],
subset_id=subset,
),
]
else:
BUILDER_CONFIGS += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} {subset} source schema",
schema="source",
subset_id=subset,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA['MT']}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {subset} SEACrowd schema",
schema=_SEACROWD_SCHEMA["MT"],
subset_id=subset,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_SUBSETS[0]}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"lang": datasets.Value("string"),
"title": datasets.Value("string"),
"source_body": datasets.Value("string"),
"target_body": datasets.Value("string"),
"link_id": datasets.Value("string"),
"source_id": datasets.Value("string"),
"target_id": datasets.Value("string"),
"translated_source_body": datasets.Value("string"),
"translated_target_body": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA["DS"]: # same schema with _SEACROWD_SCHEMA["MT"]
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lang_map = {"ind": "id", "tgl": "tl", "vie": "vi"}
lang = lang_map[self.config.subset_id.split("_")[0]]
data_url = _URLS["translated"]
data_dir = Path(dl_manager.download_and_extract(data_url)) / "translated"
data_path = "{split}_data/{lang}2en_{split}.csv"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_path": data_dir / data_path.format(split="train", lang=lang),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_path": data_dir / data_path.format(split="test", lang=lang),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_path": data_dir / data_path.format(split="eval", lang=lang),
},
),
]
def _generate_examples(self, data_path: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_csv(data_path)
# source schema
if self.config.schema == "source":
for i, row in df.iterrows():
yield i, {
"lang": row["lang"],
"title": row["title"],
"source_body": row["source_body"],
"target_body": row["target_body"],
"link_id": row["link_id"],
"source_id": row["source_id"],
"target_id": row["target_id"],
"translated_source_body": row["translated_source_body"],
"translated_target_body": row["translated_target_body"],
}
# t2t schema for dialogue
elif "dialogue" in self.config.subset_id:
for i, row in df.iterrows():
yield i, {
"id": str(i),
"text_1": row["source_body"],
"text_2": row["target_body"],
"text_1_name": "source_body",
"text_2_name": "target_body",
}
# t2t schema for machine translation
elif "eng" in self.config.subset_id:
for i, row in df.iterrows():
for j in range(2):
idx = i * 2 + j
if j == 0:
yield idx, {
"id": str(idx),
"text_1": row["source_body"],
"text_2": row["translated_source_body"],
"text_1_name": "source_body",
"text_2_name": "translated_source_body",
}
else:
yield idx, {
"id": str(idx),
"text_1": row["target_body"],
"text_2": row["translated_target_body"],
"text_1_name": "target_body",
"text_2_name": "translated_target_body",
}
|