Datasets:

ArXiv:
License:
File size: 8,577 Bytes
148a9a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
                                      Licenses, Tasks)

_CITATION = """\
@misc{zhang2022mdia,
    title={MDIA: A Benchmark for Multilingual Dialogue Generation in 46 Languages},
    author={Qingyu Zhang and Xiaoyu Shen and Ernie Chang and Jidong Ge and Pengke Chen},
    year={2022},
    eprint={2208.13078},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DATASETNAME = "mdia"

_DESCRIPTION = """\
This is a multilingual benchmark for dialogue generation containing real-life
Reddit conversations (parent and response comment pairs) in 46 languages,
including Indonesian, Tagalog and Vietnamese. English translations are also
provided for comments.
"""

_HOMEPAGE = "https://github.com/DoctorDream/mDIA"

_LANGUAGES = ["ind", "tgl", "vie"]

_LICENSE = Licenses.CC_BY_4_0.value

_LOCAL = False

_URLS = {
    "raw": "https://github.com/DoctorDream/mDIA/raw/master/datasets/raw.zip",
    "translated": "https://github.com/DoctorDream/mDIA/raw/master/datasets/translated.zip",
}

_SUPPORTED_TASKS = [Tasks.DIALOGUE_SYSTEM, Tasks.MACHINE_TRANSLATION]  # DS, MT
_SEACROWD_SCHEMA = {task.value: f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS}  # t2t
_SUBSETS = [
    "ind_dialogue",
    "ind_eng",
    "tgl_dialogue",
    "tgl_eng",
    "vie_dialogue",
    "vie_eng",
]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class MdiaDataset(datasets.GeneratorBasedBuilder):
    """Multilingual benchmark for dialogue generation containing real-life Reddit conversations"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = []
    for subset in _SUBSETS:
        if "dialogue" in subset:
            BUILDER_CONFIGS += [
                SEACrowdConfig(
                    name=f"{_DATASETNAME}_{subset}_source",
                    version=SOURCE_VERSION,
                    description=f"{_DATASETNAME} {subset} source schema",
                    schema="source",
                    subset_id=subset,
                ),
                SEACrowdConfig(
                    name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA['DS']}",
                    version=SEACROWD_VERSION,
                    description=f"{_DATASETNAME} {subset} SEACrowd schema",
                    schema=_SEACROWD_SCHEMA["DS"],
                    subset_id=subset,
                ),
            ]
        else:
            BUILDER_CONFIGS += [
                SEACrowdConfig(
                    name=f"{_DATASETNAME}_{subset}_source",
                    version=SOURCE_VERSION,
                    description=f"{_DATASETNAME} {subset} source schema",
                    schema="source",
                    subset_id=subset,
                ),
                SEACrowdConfig(
                    name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA['MT']}",
                    version=SEACROWD_VERSION,
                    description=f"{_DATASETNAME} {subset} SEACrowd schema",
                    schema=_SEACROWD_SCHEMA["MT"],
                    subset_id=subset,
                ),
            ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_SUBSETS[0]}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "lang": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "source_body": datasets.Value("string"),
                    "target_body": datasets.Value("string"),
                    "link_id": datasets.Value("string"),
                    "source_id": datasets.Value("string"),
                    "target_id": datasets.Value("string"),
                    "translated_source_body": datasets.Value("string"),
                    "translated_target_body": datasets.Value("string"),
                }
            )
        elif self.config.schema == _SEACROWD_SCHEMA["DS"]:  # same schema with _SEACROWD_SCHEMA["MT"]
            features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]]  # text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        lang_map = {"ind": "id", "tgl": "tl", "vie": "vi"}
        lang = lang_map[self.config.subset_id.split("_")[0]]

        data_url = _URLS["translated"]
        data_dir = Path(dl_manager.download_and_extract(data_url)) / "translated"
        data_path = "{split}_data/{lang}2en_{split}.csv"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_path": data_dir / data_path.format(split="train", lang=lang),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_path": data_dir / data_path.format(split="test", lang=lang),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_path": data_dir / data_path.format(split="eval", lang=lang),
                },
            ),
        ]

    def _generate_examples(self, data_path: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        df = pd.read_csv(data_path)

        # source schema
        if self.config.schema == "source":
            for i, row in df.iterrows():
                yield i, {
                    "lang": row["lang"],
                    "title": row["title"],
                    "source_body": row["source_body"],
                    "target_body": row["target_body"],
                    "link_id": row["link_id"],
                    "source_id": row["source_id"],
                    "target_id": row["target_id"],
                    "translated_source_body": row["translated_source_body"],
                    "translated_target_body": row["translated_target_body"],
                }

        # t2t schema for dialogue
        elif "dialogue" in self.config.subset_id:
            for i, row in df.iterrows():
                yield i, {
                    "id": str(i),
                    "text_1": row["source_body"],
                    "text_2": row["target_body"],
                    "text_1_name": "source_body",
                    "text_2_name": "target_body",
                }

        # t2t schema for machine translation
        elif "eng" in self.config.subset_id:
            for i, row in df.iterrows():
                for j in range(2):
                    idx = i * 2 + j
                    if j == 0:
                        yield idx, {
                            "id": str(idx),
                            "text_1": row["source_body"],
                            "text_2": row["translated_source_body"],
                            "text_1_name": "source_body",
                            "text_2_name": "translated_source_body",
                        }
                    else:
                        yield idx, {
                            "id": str(idx),
                            "text_1": row["target_body"],
                            "text_2": row["translated_target_body"],
                            "text_1_name": "target_body",
                            "text_2_name": "translated_target_body",
                        }