File size: 6,046 Bytes
b1bafdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{medev,
title = {{Improving Vietnamese-English Medical Machine Translation}},
author = {Nhu Vo and Dat Quoc Nguyen and Dung D. Le and Massimo Piccardi and Wray Buntine},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING)},
year = {2024}
}
"""
_DATASETNAME = "medev"
_DESCRIPTION = """\
A high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs
"""
_HOMEPAGE = "https://huggingface.co/datasets/nhuvo/MedEV"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
"train_en": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/train.en.txt?download=true",
"train_vie": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/train.vi.txt?download=true",
"val_en": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/val.en.new.txt?download=true",
"val_vie": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/val.vi.new.txt?download=true",
"test_en": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/test.en.new.txt?download=true",
"test_vie": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/test.vi.new.txt?download=true",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MedEVDataset(datasets.GeneratorBasedBuilder):
"""A high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_t2t",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_t2t",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"vie_text": datasets.Value("string"),
"eng_text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath_en": data_dir["train_en"],
"filepath_vie": data_dir["train_vie"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath_en": data_dir["test_en"],
"filepath_vie": data_dir["test_vie"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath_en": data_dir["val_en"],
"filepath_vie": data_dir["val_vie"],
},
),
]
def _generate_examples(self, filepath_en: Path, filepath_vie: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath_en, "r", encoding="utf-8") as f:
en_lines = f.readlines()
with open(filepath_vie, "r", encoding="utf-8") as f:
vie_lines = f.readlines()
if self.config.schema == "source":
for i in range(len(vie_lines)):
yield i, {
"id": str(i),
"vie_text": vie_lines[i],
"eng_text": en_lines[i],
}
elif self.config.schema == "seacrowd_t2t":
for i, (en_line, vie_line) in enumerate(list(zip(en_lines, vie_lines))):
yield i, {
"id": str(i),
"text_1": en_line,
"text_2": vie_line,
"text_1_name": "eng",
"text_2_name": "vie",
}
|