holylovenia
commited on
Commit
•
7e32e28
1
Parent(s):
f2b5726
Upload myanmar_rakhine_parallel.py with huggingface_hub
Browse files- myanmar_rakhine_parallel.py +179 -0
myanmar_rakhine_parallel.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List, Tuple
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from seacrowd.utils import schemas
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{myint-oo-etal-2019-neural,
|
27 |
+
title = "Neural Machine Translation between {M}yanmar ({B}urmese) and {R}akhine ({A}rakanese)",
|
28 |
+
author = "Myint Oo, Thazin and
|
29 |
+
Kyaw Thu, Ye and
|
30 |
+
Mar Soe, Khin",
|
31 |
+
editor = {Zampieri, Marcos and
|
32 |
+
Nakov, Preslav and
|
33 |
+
Malmasi, Shervin and
|
34 |
+
Ljube{\v{s}}i{\'c}, Nikola and
|
35 |
+
Tiedemann, J{\"o}rg and
|
36 |
+
Ali, Ahmed},
|
37 |
+
booktitle = "Proceedings of the Sixth Workshop on {NLP} for Similar Languages, Varieties and Dialects",
|
38 |
+
month = jun,
|
39 |
+
year = "2019",
|
40 |
+
address = "Ann Arbor, Michigan",
|
41 |
+
publisher = "Association for Computational Linguistics",
|
42 |
+
url = "https://aclanthology.org/W19-1408",
|
43 |
+
doi = "10.18653/v1/W19-1408",
|
44 |
+
pages = "80--88",
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
_DATASETNAME = "myanmar_rakhine_parallel"
|
49 |
+
_DESCRIPTION = """\
|
50 |
+
The data contains 18,373 Myanmar sentences of the ASEAN-MT Parallel Corpus,
|
51 |
+
which is a parallel corpus in the travel domain. It contains six main
|
52 |
+
categories: people (greeting, introduction, and communication), survival
|
53 |
+
(transportation, accommodation, and finance), food (food, beverages, and
|
54 |
+
restaurants), fun (recreation, traveling, shopping, and nightlife), resource
|
55 |
+
(number, time, and accuracy), special needs (emergency and health). Manual
|
56 |
+
translation into the Rakhine language was done by native Rakhine students from
|
57 |
+
two Myanmar universities, and the translated corpus was checked by the editor
|
58 |
+
of a Rakhine newspaper. Word segmentation for Rakhine was done manually, and
|
59 |
+
there are exactly 123,018 words in total.
|
60 |
+
"""
|
61 |
+
|
62 |
+
_HOMEPAGE = "https://github.com/ye-kyaw-thu/myPar/tree/master/my-rk"
|
63 |
+
_LANGUAGES = ["mya", "rki"]
|
64 |
+
_LICENSE = Licenses.GPL_3_0.value
|
65 |
+
_LOCAL = False
|
66 |
+
_URLS = {
|
67 |
+
"train_mya": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/train.my",
|
68 |
+
"dev_mya": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/dev.my",
|
69 |
+
"test_mya": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/test.my",
|
70 |
+
"train_rki": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/train.rk",
|
71 |
+
"dev_rki": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/dev.rk",
|
72 |
+
"test_rki": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/test.rk",
|
73 |
+
}
|
74 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
75 |
+
|
76 |
+
_SOURCE_VERSION = "0.1.0"
|
77 |
+
_SEACROWD_VERSION = "2024.06.20"
|
78 |
+
|
79 |
+
|
80 |
+
class MyanmarRakhineParallel(datasets.GeneratorBasedBuilder):
|
81 |
+
"""Myanmar-Rakhine Parallel dataset from https://github.com/ye-kyaw-thu/myPar/tree/master/my-rk"""
|
82 |
+
|
83 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
84 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
85 |
+
|
86 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
87 |
+
|
88 |
+
BUILDER_CONFIGS = [
|
89 |
+
SEACrowdConfig(
|
90 |
+
name=f"{_DATASETNAME}_source",
|
91 |
+
version=SOURCE_VERSION,
|
92 |
+
description=f"{_DATASETNAME} source schema",
|
93 |
+
schema="source",
|
94 |
+
subset_id=_DATASETNAME,
|
95 |
+
),
|
96 |
+
SEACrowdConfig(
|
97 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
98 |
+
version=SEACROWD_VERSION,
|
99 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
100 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
101 |
+
subset_id=_DATASETNAME,
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
106 |
+
|
107 |
+
def _info(self) -> datasets.DatasetInfo:
|
108 |
+
|
109 |
+
if self.config.schema == "source" or self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
110 |
+
features = schemas.text2text_features
|
111 |
+
else:
|
112 |
+
raise ValueError(f"Invalid config schema: {self.config.schema}")
|
113 |
+
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
description=_DESCRIPTION,
|
116 |
+
features=features,
|
117 |
+
homepage=_HOMEPAGE,
|
118 |
+
license=_LICENSE,
|
119 |
+
citation=_CITATION,
|
120 |
+
)
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
123 |
+
"""Returns SplitGenerators."""
|
124 |
+
|
125 |
+
data_paths = {
|
126 |
+
"train_mya": Path(dl_manager.download_and_extract(_URLS["train_mya"])),
|
127 |
+
"dev_mya": Path(dl_manager.download_and_extract(_URLS["dev_mya"])),
|
128 |
+
"test_mya": Path(dl_manager.download_and_extract(_URLS["test_mya"])),
|
129 |
+
"train_rki": Path(dl_manager.download_and_extract(_URLS["train_rki"])),
|
130 |
+
"dev_rki": Path(dl_manager.download_and_extract(_URLS["dev_rki"])),
|
131 |
+
"test_rki": Path(dl_manager.download_and_extract(_URLS["test_rki"])),
|
132 |
+
}
|
133 |
+
|
134 |
+
return [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TRAIN,
|
137 |
+
gen_kwargs={
|
138 |
+
"mya_filepath": data_paths["train_mya"],
|
139 |
+
"rki_filepath": data_paths["train_rki"],
|
140 |
+
"split": "train",
|
141 |
+
},
|
142 |
+
),
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.TEST,
|
145 |
+
gen_kwargs={
|
146 |
+
"mya_filepath": data_paths["test_mya"],
|
147 |
+
"rki_filepath": data_paths["test_rki"],
|
148 |
+
"split": "test",
|
149 |
+
},
|
150 |
+
),
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.VALIDATION,
|
153 |
+
gen_kwargs={
|
154 |
+
"mya_filepath": data_paths["dev_mya"],
|
155 |
+
"rki_filepath": data_paths["dev_rki"],
|
156 |
+
"split": "dev",
|
157 |
+
},
|
158 |
+
),
|
159 |
+
]
|
160 |
+
|
161 |
+
def _generate_examples(self, mya_filepath: Path, rki_filepath: Path, split: str) -> Tuple[int, Dict]:
|
162 |
+
"""Yields examples as (key, example) tuples."""
|
163 |
+
|
164 |
+
# read mya file
|
165 |
+
with open(mya_filepath, "r", encoding="utf-8") as mya_file:
|
166 |
+
mya_data = mya_file.readlines()
|
167 |
+
mya_data = [s.strip("\n") for s in mya_data]
|
168 |
+
|
169 |
+
# read rki file
|
170 |
+
with open(rki_filepath, "r", encoding="utf-8") as rki_file:
|
171 |
+
rki_data = rki_file.readlines()
|
172 |
+
rki_data = [s.strip("\n") for s in rki_data]
|
173 |
+
|
174 |
+
num_sample = len(mya_data)
|
175 |
+
|
176 |
+
for i in range(num_sample):
|
177 |
+
if self.config.schema == "source" or self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
178 |
+
example = {"id": str(i), "text_1": mya_data[i], "text_2": rki_data[i], "text_1_name": "mya", "text_2_name": "rki"}
|
179 |
+
yield i, example
|