holylovenia commited on
Commit
1f56154
1 Parent(s): 4ce0508

Upload nusatranslation_emot.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. nusatranslation_emot.py +17 -17
nusatranslation_emot.py CHANGED
@@ -4,15 +4,15 @@ from typing import Dict, List, Tuple
4
  import datasets
5
  import pandas as pd
6
 
7
- from nusacrowd.utils import schemas
8
- from nusacrowd.utils.configs import NusantaraConfig
9
- from nusacrowd.utils.constants import DEFAULT_NUSANTARA_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
10
 
11
  _LOCAL = False
12
 
13
  _DATASETNAME = "nusatranslation_emot"
14
  _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
15
- _UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
16
 
17
  _LANGUAGES = ["abs", "btk", "bew", "bug", "jav", "mad", "mak", "min", "mui", "rej", "sun"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
18
 
@@ -40,7 +40,7 @@ _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]
40
 
41
  _SOURCE_VERSION = "1.0.0"
42
 
43
- _NUSANTARA_VERSION = "1.0.0"
44
 
45
  _URLS = {
46
  "train": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-emot-{lang}-train.csv",
@@ -49,13 +49,13 @@ _URLS = {
49
  }
50
 
51
 
52
- def nusantara_config_constructor(lang, schema, version):
53
- """Construct NusantaraConfig with nusatranslation_emot_{lang}_{schema} as the name format"""
54
- if schema != "source" and schema != "nusantara_text":
55
  raise ValueError(f"Invalid schema: {schema}")
56
 
57
  if lang == "":
58
- return NusantaraConfig(
59
  name="nusatranslation_emot_{schema}".format(schema=schema),
60
  version=datasets.Version(version),
61
  description="nusatranslation_emot with {schema} schema for all 12 languages".format(schema=schema),
@@ -63,7 +63,7 @@ def nusantara_config_constructor(lang, schema, version):
63
  subset_id="nusatranslation_emot",
64
  )
65
  else:
66
- return NusantaraConfig(
67
  name="nusatranslation_emot_{lang}_{schema}".format(lang=lang, schema=schema),
68
  version=datasets.Version(version),
69
  description="nusatranslation_emot with {schema} schema for {lang} language".format(lang=lang, schema=schema),
@@ -91,9 +91,9 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
91
  """NusaTranslationEmot is a 5-labels (fear, sadness, happy, anger, love) emotion classification dataset for 11 Indonesian local languages + Indonesian and English."""
92
 
93
  BUILDER_CONFIGS = (
94
- [nusantara_config_constructor(lang, "source", _SOURCE_VERSION) for lang in LANGUAGES_MAP]
95
- + [nusantara_config_constructor(lang, "nusantara_text", _NUSANTARA_VERSION) for lang in LANGUAGES_MAP]
96
- + [nusantara_config_constructor("", "source", _SOURCE_VERSION), nusantara_config_constructor("", "nusantara_text", _NUSANTARA_VERSION)]
97
  )
98
 
99
  DEFAULT_CONFIG_NAME = "nusatranslation_emot_source"
@@ -107,7 +107,7 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
107
  "label": datasets.Value("string"),
108
  }
109
  )
110
- elif self.config.schema == "nusantara_text":
111
  features = schemas.text_features(["fear", "sadness", "happy", "anger", "love"])
112
 
113
  return datasets.DatasetInfo(
@@ -120,7 +120,7 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
120
 
121
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
122
  """Returns SplitGenerators."""
123
- if self.config.name == "nusatranslation_emot_source" or self.config.name == "nusatranslation_emot_nusantara_text":
124
  # Load all 12 languages
125
  train_csv_path = dl_manager.download_and_extract([_URLS["train"].format(lang=lang) for lang in LANGUAGES_MAP])
126
  validation_csv_path = dl_manager.download_and_extract([_URLS["validation"].format(lang=lang) for lang in LANGUAGES_MAP])
@@ -147,10 +147,10 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
147
  ]
148
 
149
  def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
150
- if self.config.schema != "source" and self.config.schema != "nusantara_text":
151
  raise ValueError(f"Invalid config: {self.config.name}")
152
 
153
- if self.config.name == "nusatranslation_emot_source" or self.config.name == "nusatranslation_emot_nusantara_text":
154
  ldf = []
155
  for fp in filepath:
156
  ldf.append(pd.read_csv(fp))
 
4
  import datasets
5
  import pandas as pd
6
 
7
+ from seacrowd.utils import schemas
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
10
 
11
  _LOCAL = False
12
 
13
  _DATASETNAME = "nusatranslation_emot"
14
  _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
15
+ _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
16
 
17
  _LANGUAGES = ["abs", "btk", "bew", "bug", "jav", "mad", "mak", "min", "mui", "rej", "sun"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
18
 
 
40
 
41
  _SOURCE_VERSION = "1.0.0"
42
 
43
+ _SEACROWD_VERSION = "2024.06.20"
44
 
45
  _URLS = {
46
  "train": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-emot-{lang}-train.csv",
 
49
  }
50
 
51
 
52
+ def seacrowd_config_constructor(lang, schema, version):
53
+ """Construct SEACrowdConfig with nusatranslation_emot_{lang}_{schema} as the name format"""
54
+ if schema != "source" and schema != "seacrowd_text":
55
  raise ValueError(f"Invalid schema: {schema}")
56
 
57
  if lang == "":
58
+ return SEACrowdConfig(
59
  name="nusatranslation_emot_{schema}".format(schema=schema),
60
  version=datasets.Version(version),
61
  description="nusatranslation_emot with {schema} schema for all 12 languages".format(schema=schema),
 
63
  subset_id="nusatranslation_emot",
64
  )
65
  else:
66
+ return SEACrowdConfig(
67
  name="nusatranslation_emot_{lang}_{schema}".format(lang=lang, schema=schema),
68
  version=datasets.Version(version),
69
  description="nusatranslation_emot with {schema} schema for {lang} language".format(lang=lang, schema=schema),
 
91
  """NusaTranslationEmot is a 5-labels (fear, sadness, happy, anger, love) emotion classification dataset for 11 Indonesian local languages + Indonesian and English."""
92
 
93
  BUILDER_CONFIGS = (
94
+ [seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in LANGUAGES_MAP]
95
+ + [seacrowd_config_constructor(lang, "seacrowd_text", _SEACROWD_VERSION) for lang in LANGUAGES_MAP]
96
+ + [seacrowd_config_constructor("", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "seacrowd_text", _SEACROWD_VERSION)]
97
  )
98
 
99
  DEFAULT_CONFIG_NAME = "nusatranslation_emot_source"
 
107
  "label": datasets.Value("string"),
108
  }
109
  )
110
+ elif self.config.schema == "seacrowd_text":
111
  features = schemas.text_features(["fear", "sadness", "happy", "anger", "love"])
112
 
113
  return datasets.DatasetInfo(
 
120
 
121
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
122
  """Returns SplitGenerators."""
123
+ if self.config.name == "nusatranslation_emot_source" or self.config.name == "nusatranslation_emot_seacrowd_text":
124
  # Load all 12 languages
125
  train_csv_path = dl_manager.download_and_extract([_URLS["train"].format(lang=lang) for lang in LANGUAGES_MAP])
126
  validation_csv_path = dl_manager.download_and_extract([_URLS["validation"].format(lang=lang) for lang in LANGUAGES_MAP])
 
147
  ]
148
 
149
  def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
150
+ if self.config.schema != "source" and self.config.schema != "seacrowd_text":
151
  raise ValueError(f"Invalid config: {self.config.name}")
152
 
153
+ if self.config.name == "nusatranslation_emot_source" or self.config.name == "nusatranslation_emot_seacrowd_text":
154
  ldf = []
155
  for fp in filepath:
156
  ldf.append(pd.read_csv(fp))