Datasets:
ArXiv:
License:
File size: 9,503 Bytes
40f028e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
from pathlib import Path
from typing import Dict, List, Tuple
from zipfile import ZipFile
import datasets
import yaml
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{PhoST,
title = {{A High-Quality and Large-Scale Dataset for English-Vietnamese Speech Translation}},
author = {Linh The Nguyen and Nguyen Luong Tran and Long Doan and Manh Luong and Dat Quoc Nguyen},
booktitle = {Proceedings of the 23rd Annual Conference of the International Speech Communication Association (INTERSPEECH)},
year = {2022}
}
"""
_DATASETNAME = "phost"
_DESCRIPTION = """\
PhoST is a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation
with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source
transcript sentence, Vietnamese target subtitle sentence).
"""
_HOMEPAGE = "https://github.com/VinAIResearch/PhoST"
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
_LOCAL = True
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.SPEECH_TO_TEXT_TRANSLATION, Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LANGUAGES = ["eng", "vie"]
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version):
if src_lang == "" or tgt_lang == "":
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}")
if schema not in ["source", "seacrowd_sptext", "seacrowd_t2t"]:
raise ValueError(f"Invalid schema: {schema}")
return SEACrowdConfig(
name="phost_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema),
version=datasets.Version(version),
description="phost schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang),
schema=schema,
subset_id="phost_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang),
)
class Phost(datasets.GeneratorBasedBuilder):
"""
PhoST is a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation
with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source
transcript sentence, Vietnamese target subtitle sentence).
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
seacrowd_config_constructor("en", "vi", "source", _SOURCE_VERSION),
seacrowd_config_constructor("en", "vi", "seacrowd_sptext", _SEACROWD_VERSION),
seacrowd_config_constructor("en", "vi", "seacrowd_t2t", _SEACROWD_VERSION),
]
DEFAULT_CONFIG_NAME = "phost_en_vi_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"en_text": datasets.Value("string"),
"vi_text": datasets.Value("string"),
"timing": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir
aud_path = os.path.join(data_dir, "audio_data")
if not os.path.exists(aud_path):
os.makedirs(aud_path)
# loading the temp.zip and creating a zip object
with ZipFile(os.path.join(data_dir, "train_audio.zip"), "r") as zObject:
for member in zObject.namelist():
if not os.path.exists(os.path.join(aud_path, "train", member)) or not os.path.isfile(os.path.join(aud_path, "train", member)):
zObject.extract(member, os.path.join(aud_path, "train"))
# dev audio files
with ZipFile(os.path.join(data_dir, "dev_audio.zip"), "r") as zObject:
for member in zObject.namelist():
if not os.path.exists(os.path.join(aud_path, "dev", member)) or not os.path.isfile(os.path.join(aud_path, "dev", member)):
zObject.extract(member, aud_path)
# test audio files
with ZipFile(os.path.join(data_dir, "test_audio.zip"), "r") as zObject:
for member in zObject.namelist():
if not os.path.exists(os.path.join(aud_path, "test", member)) or not os.path.isfile(os.path.join(aud_path, "test", member)):
zObject.extract(member, aud_path)
# text data
with ZipFile(os.path.join(data_dir, "text_data.zip"), "r") as zObject:
for member in zObject.namelist():
if not os.path.exists(os.path.join(data_dir, member)) or not os.path.isfile(os.path.join(data_dir, member)):
zObject.extract(member, data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": {"audio": os.path.join(aud_path, "train", "wav"), "text": os.path.join(data_dir, "text_data", "train")},
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": {"audio": os.path.join(aud_path, "test", "wav"), "text": os.path.join(data_dir, "text_data", "test")},
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": {"audio": os.path.join(aud_path, "dev", "wav"), "text": os.path.join(data_dir, "text_data", "dev")},
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
config_names_split = self.config.name.split("_")
src_lang = config_names_split[1]
tgt_lang = config_names_split[2]
track_ids = os.listdir(filepath["text"])
timing = []
en_sub = []
vi_sub = []
counter = 0
for key, track_id in enumerate(track_ids):
with open(os.path.join(filepath["text"], track_id, track_id + ".yaml")) as timing_file:
timing = yaml.safe_load(timing_file)
with open(os.path.join(filepath["text"], track_id, track_id + ".en")) as en_text:
en_sub = [line.strip() for line in en_text]
with open(
os.path.join(filepath["text"], track_id, track_id + ".vi"),
) as vi_text:
vi_sub = [line.strip() for line in vi_text]
if self.config.schema == "source":
yield key, {"file": os.path.join(filepath["audio"], track_id + ".wav"), "audio": os.path.join(filepath["audio"], track_id + ".wav"), "en_text": " ".join(en_sub), "vi_text": " ".join(vi_sub), "timing": timing}
elif self.config.schema == "seacrowd_sptext":
if tgt_lang not in ["en", "vi"]:
raise NotImplementedError(f"Target language '{tgt_lang}' is not defined.")
yield key, {
"id": track_id,
"path": os.path.join(filepath["audio"], track_id + ".wav"),
"audio": os.path.join(filepath["audio"], track_id + ".wav"),
"text": " ".join(en_sub) if tgt_lang == "en" else " ".join(vi_sub),
"speaker_id": None,
"metadata": {
"speaker_age": None,
"speaker_gender": None,
},
}
elif self.config.schema == "seacrowd_t2t":
if src_lang not in ["en", "vi"]:
raise NotImplementedError(f"Source language '{src_lang}' is not defined.")
if tgt_lang not in ["en", "vi"]:
raise NotImplementedError(f"Target language '{tgt_lang}' is not defined.")
for en_line, vi_line in zip(en_sub, vi_sub):
yield counter, {
"id": f"{track_id}_{str(counter)}",
"text_1": en_line if src_lang == "en" else vi_line,
"text_2": en_line if tgt_lang == "en" else vi_line,
"text_1_name": src_lang,
"text_2_name": tgt_lang,
}
counter += 1
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
|