File size: 6,891 Bytes
351a67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from pathlib import Path
from typing import Dict, List

import datasets

from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks

_CITATION = """\
@article{published_papers/22434604,
  title = {TUFS Asian Language Parallel Corpus (TALPCo)},
  author = {Hiroki Nomoto and Kenji Okano and David Moeljadi and Hideo Sawada},
  journal = {言語処理学会 第24回年次大会 発表論文集},
  pages = {436--439},
  year = {2018}
}
@article{published_papers/22434603,
  title = {Interpersonal meaning annotation for Asian language corpora: The case of TUFS Asian Language Parallel Corpus (TALPCo)},
  author = {Hiroki Nomoto and Kenji Okano and Sunisa Wittayapanyanon and Junta Nomura},
  journal = {言語処理学会 第25回年次大会 発表論文集},
  pages = {846--849},
  year = {2019}
}
"""
_DATASETNAME = "talpco"
_DESCRIPTION = """\
The TUFS Asian Language Parallel Corpus (TALPCo) is an open parallel corpus consisting of Japanese sentences
and their translations into Korean, Burmese (Myanmar; the official language of the Republic of the Union of Myanmar),
Malay (the national language of Malaysia, Singapore and Brunei), Indonesian, Thai, Vietnamese and English.
"""
_HOMEPAGE = "https://github.com/matbahasa/TALPCo"
_LOCAL = False
_LANGUAGES = ["eng", "ind", "jpn", "kor", "myn", "tha", "vie", "zsm"]
_LICENSE = "CC-BY 4.0"
_URLS = {
    _DATASETNAME: "https://github.com/matbahasa/TALPCo/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"


def nusantara_config_constructor(lang_source, lang_target, schema, version):
    """Construct NusantaraConfig with talpco_{lang_source}_{lang_target}_{schema} as the name format"""
    if schema != "source" and schema != "nusantara_t2t":
        raise ValueError(f"Invalid schema: {schema}")

    if lang_source == "" and lang_target == "":
        return NusantaraConfig(
            name="talpco_{schema}".format(schema=schema),
            version=datasets.Version(version),
            description="talpco with {schema} schema for all 7 language pairs from / to ind language".format(schema=schema),
            schema=schema,
            subset_id="talpco",
        )
    else:
        return NusantaraConfig(
            name="talpco_{lang_source}_{lang_target}_{schema}".format(lang_source=lang_source, lang_target=lang_target, schema=schema),
            version=datasets.Version(version),
            description="talpco with {schema} schema for {lang_source} source language and  {lang_target} target language".format(lang_source=lang_source, lang_target=lang_target, schema=schema),
            schema=schema,
            subset_id="talpco",
        )


class TALPCo(datasets.GeneratorBasedBuilder):
    """TALPCo datasets contains 1372 datasets in 8 languages"""

    BUILDER_CONFIGS = (
        [nusantara_config_constructor(lang1, lang2, "source", _SOURCE_VERSION) for lang1 in _LANGUAGES for lang2 in _LANGUAGES if lang1 != lang2]
        + [nusantara_config_constructor(lang1, lang2, "nusantara_t2t", _NUSANTARA_VERSION) for lang1 in _LANGUAGES for lang2 in _LANGUAGES if lang1 != lang2]
        + [nusantara_config_constructor("", "", "source", _SOURCE_VERSION), nusantara_config_constructor("", "", "nusantara_t2t", _NUSANTARA_VERSION)]
    )

    DEFAULT_CONFIG_NAME = "talpco_jpn_ind_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source" or self.config.schema == "nusantara_t2t":
            features = schemas.text2text_features
        else:
            raise ValueError(f"Invalid config schema: {self.config.schema}")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        base_path = Path(dl_manager.download_and_extract(urls)) / "TALPCo-master"
        data = {}
        for lang in _LANGUAGES:
            lang_file_name = "data_" + lang + ".txt"
            lang_file_path = base_path / lang / lang_file_name
            if os.path.isfile(lang_file_path):
                with open(lang_file_path, "r") as file:
                    data[lang] = file.read().strip("\n").split("\n")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data": data,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, data: Dict, split: str):
        if self.config.schema != "source" and self.config.schema != "nusantara_t2t":
            raise ValueError(f"Invalid config schema: {self.config.schema}")

        if self.config.name == "talpco_source" or self.config.name == "talpco_nusantara_t2t":
            # load all 7 language pairs from / to ind language
            lang_target = "ind"
            for lang_source in _LANGUAGES:
                if lang_source == lang_target:
                    continue
                for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data):
                    yield language_pair_data

            lang_source = "ind"
            for lang_target in _LANGUAGES:
                if lang_source == lang_target:
                    continue
                for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data):
                    yield language_pair_data
        else:
            _, lang_source, lang_target = self.config.name.replace(f"_{self.config.schema}", "").split("_")
            for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data):
                yield language_pair_data

    def generate_language_pair_data(self, lang_source, lang_target, data):
        dict_source = {}
        for row in data[lang_source]:
            id, text = row.split("\t")
            dict_source[id] = text

        dict_target = {}
        for row in data[lang_target]:
            id, text = row.split("\t")
            dict_target[id] = text

        all_ids = set([k for k in dict_source.keys()] + [k for k in dict_target.keys()])
        dict_merged = {k: [dict_source.get(k), dict_target.get(k)] for k in all_ids}

        for id in sorted(all_ids):
            ex = {
                "id": lang_source + "_"  + lang_target + "_"  + id,
                "text_1": dict_merged[id][0],
                "text_2": dict_merged[id][1],
                "text_1_name": lang_source,
                "text_2_name": lang_target,
            }
            yield lang_source + "_" + lang_target + "_"  + id, ex