talpco / talpco.py
holylovenia's picture
Upload talpco.py with huggingface_hub
4abff89 verified
raw
history blame
6.88 kB
import os
from pathlib import Path
from typing import Dict, List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@article{published_papers/22434604,
title = {TUFS Asian Language Parallel Corpus (TALPCo)},
author = {Hiroki Nomoto and Kenji Okano and David Moeljadi and Hideo Sawada},
journal = {言語処理学会 第24回年次大会 発表論文集},
pages = {436--439},
year = {2018}
}
@article{published_papers/22434603,
title = {Interpersonal meaning annotation for Asian language corpora: The case of TUFS Asian Language Parallel Corpus (TALPCo)},
author = {Hiroki Nomoto and Kenji Okano and Sunisa Wittayapanyanon and Junta Nomura},
journal = {言語処理学会 第25回年次大会 発表論文集},
pages = {846--849},
year = {2019}
}
"""
_DATASETNAME = "talpco"
_DESCRIPTION = """\
The TUFS Asian Language Parallel Corpus (TALPCo) is an open parallel corpus consisting of Japanese sentences
and their translations into Korean, Burmese (Myanmar; the official language of the Republic of the Union of Myanmar),
Malay (the national language of Malaysia, Singapore and Brunei), Indonesian, Thai, Vietnamese and English.
"""
_HOMEPAGE = "https://github.com/matbahasa/TALPCo"
_LOCAL = False
_LANGUAGES = ["eng", "ind", "jpn", "kor", "myn", "tha", "vie", "zsm"]
_LICENSE = "CC-BY 4.0"
_URLS = {
_DATASETNAME: "https://github.com/matbahasa/TALPCo/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
def seacrowd_config_constructor(lang_source, lang_target, schema, version):
"""Construct SEACrowdConfig with talpco_{lang_source}_{lang_target}_{schema} as the name format"""
if schema != "source" and schema != "seacrowd_t2t":
raise ValueError(f"Invalid schema: {schema}")
if lang_source == "" and lang_target == "":
return SEACrowdConfig(
name="talpco_{schema}".format(schema=schema),
version=datasets.Version(version),
description="talpco with {schema} schema for all 7 language pairs from / to ind language".format(schema=schema),
schema=schema,
subset_id="talpco",
)
else:
return SEACrowdConfig(
name="talpco_{lang_source}_{lang_target}_{schema}".format(lang_source=lang_source, lang_target=lang_target, schema=schema),
version=datasets.Version(version),
description="talpco with {schema} schema for {lang_source} source language and {lang_target} target language".format(lang_source=lang_source, lang_target=lang_target, schema=schema),
schema=schema,
subset_id="talpco",
)
class TALPCo(datasets.GeneratorBasedBuilder):
"""TALPCo datasets contains 1372 datasets in 8 languages"""
BUILDER_CONFIGS = (
[seacrowd_config_constructor(lang1, lang2, "source", _SOURCE_VERSION) for lang1 in _LANGUAGES for lang2 in _LANGUAGES if lang1 != lang2]
+ [seacrowd_config_constructor(lang1, lang2, "seacrowd_t2t", _SEACROWD_VERSION) for lang1 in _LANGUAGES for lang2 in _LANGUAGES if lang1 != lang2]
+ [seacrowd_config_constructor("", "", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "", "seacrowd_t2t", _SEACROWD_VERSION)]
)
DEFAULT_CONFIG_NAME = "talpco_jpn_ind_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source" or self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
else:
raise ValueError(f"Invalid config schema: {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
base_path = Path(dl_manager.download_and_extract(urls)) / "TALPCo-master"
data = {}
for lang in _LANGUAGES:
lang_file_name = "data_" + lang + ".txt"
lang_file_path = base_path / lang / lang_file_name
if os.path.isfile(lang_file_path):
with open(lang_file_path, "r") as file:
data[lang] = file.read().strip("\n").split("\n")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": data,
"split": "train",
},
),
]
def _generate_examples(self, data: Dict, split: str):
if self.config.schema != "source" and self.config.schema != "seacrowd_t2t":
raise ValueError(f"Invalid config schema: {self.config.schema}")
if self.config.name == "talpco_source" or self.config.name == "talpco_seacrowd_t2t":
# load all 7 language pairs from / to ind language
lang_target = "ind"
for lang_source in _LANGUAGES:
if lang_source == lang_target:
continue
for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data):
yield language_pair_data
lang_source = "ind"
for lang_target in _LANGUAGES:
if lang_source == lang_target:
continue
for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data):
yield language_pair_data
else:
_, lang_source, lang_target = self.config.name.replace(f"_{self.config.schema}", "").split("_")
for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data):
yield language_pair_data
def generate_language_pair_data(self, lang_source, lang_target, data):
dict_source = {}
for row in data[lang_source]:
id, text = row.split("\t")
dict_source[id] = text
dict_target = {}
for row in data[lang_target]:
id, text = row.split("\t")
dict_target[id] = text
all_ids = set([k for k in dict_source.keys()] + [k for k in dict_target.keys()])
dict_merged = {k: [dict_source.get(k), dict_target.get(k)] for k in all_ids}
for id in sorted(all_ids):
ex = {
"id": lang_source + "_" + lang_target + "_" + id,
"text_1": dict_merged[id][0],
"text_2": dict_merged[id][1],
"text_1_name": lang_source,
"text_2_name": lang_target,
}
yield lang_source + "_" + lang_target + "_" + id, ex