|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{tatoeba, |
|
title = {Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond}, |
|
author = {Mikel, Artetxe and Holger, Schwenk,}, |
|
journal = {arXiv:1812.10464v2}, |
|
year = {2018} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind", "vie", "tgl", "jav", "tha", "eng"] |
|
_DATASETNAME = "tatoeba" |
|
_DESCRIPTION = """\ |
|
This dataset is a subset of the Tatoeba corpus containing language pairs for Indonesian, Vietnamese, Tagalog, Javanese, and Thai. |
|
The original dataset description can be found below: |
|
|
|
This data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17. |
|
For each languages, we have selected 1000 English sentences and their translations, if available. Please check |
|
this paper for a description of the languages, their families and scripts as well as baseline results. |
|
Please note that the English sentences are not identical for all language pairs. This means that the results are |
|
not directly comparable across languages. In particular, the sentences tend to have less variety for several |
|
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ... |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/facebookresearch/LASER/blob/main/data/tatoeba/v1/README.md" |
|
_LICENSE = Licenses.APACHE_2_0.value |
|
_URL = "https://github.com/facebookresearch/LASER/raw/main/data/tatoeba/v1/" |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class TatoebaDataset(datasets.GeneratorBasedBuilder): |
|
"""Tatoeba subset for Indonesian, Vietnamese, Tagalog, Javanese, and Thai.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
|
|
dataset_names = sorted([f"tatoeba_{lang}_eng" for lang in _LANGUAGES[:-1]]) + sorted([f"tatoeba_eng_{lang}" for lang in _LANGUAGES[:-1]]) |
|
BUILDER_CONFIGS = [] |
|
for name in dataset_names: |
|
source_config = SEACrowdConfig( |
|
name=f"{name}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=name, |
|
) |
|
BUILDER_CONFIGS.append(source_config) |
|
seacrowd_config = SEACrowdConfig( |
|
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=name, |
|
) |
|
BUILDER_CONFIGS.append(seacrowd_config) |
|
|
|
|
|
BUILDER_CONFIGS.extend( |
|
[ |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema (all)", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema (all)", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
) |
|
|
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"source_sentence": datasets.Value("string"), |
|
"target_sentence": datasets.Value("string"), |
|
"source_lang": datasets.Value("string"), |
|
"target_lang": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text2text_features |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Return SplitGenerators.""" |
|
language_pairs = [] |
|
tatoeba_source_data = [] |
|
tatoeba_eng_data = [] |
|
|
|
lang_1 = self.config.name.split("_")[1] |
|
lang_2 = self.config.name.split("_")[2] |
|
if lang_1 == "eng": |
|
lang = lang_2 |
|
else: |
|
lang = lang_1 |
|
|
|
if lang in _LANGUAGES: |
|
|
|
tatoeba_source_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.{lang_1}")) |
|
tatoeba_eng_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.{lang_2}")) |
|
language_pairs.append((lang_1, lang_2)) |
|
else: |
|
|
|
|
|
for lang in _LANGUAGES[:-1]: |
|
tatoeba_source_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.{lang}")) |
|
tatoeba_eng_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.eng")) |
|
language_pairs.append((lang, "eng")) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": (tatoeba_source_data, tatoeba_eng_data), |
|
"split": "dev", |
|
"language_pairs": language_pairs, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepaths: Tuple[List[Path], List[Path]], split: str, language_pairs: List[str]) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
source_files, target_files = filepaths |
|
source_sents = [] |
|
target_sents = [] |
|
source_langs = [] |
|
target_langs = [] |
|
|
|
for source_file, target_file, (lang_1, lang_2) in zip(source_files, target_files, language_pairs): |
|
with open(source_file, encoding="utf-8") as f1: |
|
for row in f1: |
|
source_sents.append(row.strip()) |
|
source_langs.append(lang_1) |
|
with open(target_file, encoding="utf-8") as f2: |
|
for row in f2: |
|
target_sents.append(row.strip()) |
|
target_langs.append(lang_2) |
|
|
|
for idx, (source, target, lang_src, lang_tgt) in enumerate(zip(source_sents, target_sents, source_langs, target_langs)): |
|
if self.config.schema == "source": |
|
example = { |
|
"source_sentence": source, |
|
"target_sentence": target, |
|
|
|
|
|
"source_lang": lang_src, |
|
"target_lang": lang_tgt, |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
example = { |
|
"id": str(idx), |
|
"text_1": source, |
|
"text_2": target, |
|
|
|
|
|
"text_1_name": lang_src, |
|
"text_2_name": lang_tgt, |
|
} |
|
yield idx, example |
|
|