import json from pathlib import Path from typing import List import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks _DATASETNAME = "thai_depression" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _LANGUAGES = ["tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _CITATION = """\ @inproceedings{hamalainen-etal-2021-detecting, title = "Detecting Depression in Thai Blog Posts: a Dataset and a Baseline", author = {H{\"a}m{\"a}l{\"a}inen, Mika and Patpong, Pattama and Alnajjar, Khalid and Partanen, Niko and Rueter, Jack}, editor = "Xu, Wei and Ritter, Alan and Baldwin, Tim and Rahimi, Afshin", booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.wnut-1.3", doi = "10.18653/v1/2021.wnut-1.3", pages = "20--25", abstract = "We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs. We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression. This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia. Our corpus, code and trained models have been released openly on Zenodo.", } """ _DESCRIPTION = """\ We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs. We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression. This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia. Our corpus, code and trained models have been released openly on Zenodo. """ _HOMEPAGE = "https://zenodo.org/records/4734552" _LICENSE = Licenses.CC_BY_NC_ND_4_0.value _URLs = "https://zenodo.org/records/4734552/files/data.zip?download=1" _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class ThaiDepressionDataset(datasets.GeneratorBasedBuilder): """Thai depression detection dataset.""" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_text", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} seacrowd schema", schema="seacrowd_text", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "text": datasets.Value("string"), "label": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_text": features = schemas.text_features(["depression", "no_depression"]) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: path = Path(dl_manager.download_and_extract(_URLs)) data_files = { "train": path / "splits/train.json", "test": path / "splits/test.json", "valid": path / "splits/valid.json", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["valid"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}, ), ] def _parse_and_label(self, file_path): with open(file_path, "r", encoding="utf-8") as file: data = json.load(file) parsed_data = [] for item in data: parsed_data.append({"text": item[0], "label": item[1]}) return parsed_data def _generate_examples(self, filepath: Path): print("Reading ", filepath) for id, row in enumerate(self._parse_and_label(filepath)): if self.config.schema == "source": yield id, {"text": row["text"], "label": row["label"]} elif self.config.schema == "seacrowd_text": yield id, {"id": str(id), "text": row["text"], "label": row["label"]} else: raise ValueError(f"Invalid config: {self.config.name}")