Datasets:

Languages:
Thai
ArXiv:
License:
File size: 3,481 Bytes
868f000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

---
license: cc-by-sa-4.0
language: 
- tha
pretty_name: Thai Ser
task_categories: 
- speech-emotion-recognition
tags: 
- speech-emotion-recognition
---

THAI SER dataset consists of 5 main emotions assigned to actors: Neutral,
Anger, Happiness, Sadness, and Frustration. The recordings were 41 hours,
36 minutes long (27,854 utterances), and were performed by 200 professional
actors (112 female, 88 male) and directed by students, former alumni, and
professors from the Faculty of Arts, Chulalongkorn University. The THAI SER
contains 100 recordings and is separated into two main categories: Studio and
Zoom. Studio recordings also consist of two studio environments: Studio A, a
controlled studio room with soundproof walls, and Studio B, a normal room
without soundproof or noise control.


## Languages

tha

## Supported Tasks

Speech Emotion Recognition
    
## Dataset Usage
### Using `datasets` library
```
    from datasets import load_dataset
    dset = datasets.load_dataset("SEACrowd/thai_ser", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
    dset = sc.load_dataset("thai_ser", schema="seacrowd")
# Check all available subsets (config names) of the dataset
    print(sc.available_config_names("thai_ser"))
# Load the dataset using a specific config
    dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```
    
    More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
    

## Dataset Homepage

[https://github.com/vistec-AI/dataset-releases/releases/tag/v1](https://github.com/vistec-AI/dataset-releases/releases/tag/v1)

## Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

## Dataset License

Creative Commons Attribution Share Alike 4.0 (cc-by-sa-4.0)

## Citation

If you are using the **Thai Ser** dataloader in your work, please cite the following:
```


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```