File size: 5,942 Bytes
05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 f8da5cc 05b1129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from pathlib import Path
from typing import List
import datasets
import json
import os
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME
_DATASETNAME = "titml_idn"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_CITATION = """\
@inproceedings{lestari2006titmlidn,
title={A large vocabulary continuous speech recognition system for Indonesian language},
author={Lestari, Dessi Puji and Iwano, Koji and Furui, Sadaoki},
booktitle={15th Indonesian Scientific Conference in Japan Proceedings},
pages={17--22},
year={2006}
}
"""
_DESCRIPTION = """\
TITML-IDN (Tokyo Institute of Technology Multilingual - Indonesian) is collected to build a pioneering Indonesian Large Vocabulary Continuous Speech Recognition (LVCSR) System. In order to build an LVCSR system, high accurate acoustic models and large-scale language models are essential. Since Indonesian speech corpus was not available yet, we tried to collect speech data from 20 Indonesian native speakers (11 males and 9 females) to construct a speech corpus for training the acoustic model based on Hidden Markov Models (HMMs). A text corpus which was collected by ILPS, Informatics Institute, University of Amsterdam, was used to build a 40K-vocabulary dictionary and a n-gram language model.
"""
_HOMEPAGE = "http://research.nii.ac.jp/src/en/TITML-IDN.html"
_LICENSE = Licenses.OTHERS.value + " | For research purposes only. If you use this corpus, you have to cite (Lestari et al, 2006)."
_URLs = {"titml-idn": "https://huggingface.co/datasets/holylovenia/TITML-IDN/resolve/main/IndoLVCSR.zip"}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class TitmlIdn(datasets.GeneratorBasedBuilder):
"""TITML-IDN is a speech recognition dataset containing Indonesian speech collected with transcriptions from newpaper and magazine articles."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name="titml_idn_source",
version=datasets.Version(_SOURCE_VERSION),
description="TITML-IDN source schema",
schema="source",
subset_id="titml_idn",
),
SEACrowdConfig(
name="titml_idn_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description="TITML-IDN Nusantara schema",
schema="seacrowd_sptext",
subset_id="titml_idn",
),
]
DEFAULT_CONFIG_NAME = "titml_idn_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
base_path = dl_manager.download_and_extract(_URLs["titml-idn"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": base_path},
),
]
def _generate_examples(self, filepath: Path, n_speakers=20):
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
for speaker_id in range(1, n_speakers + 1):
speaker_id = str(speaker_id).zfill(2)
dir_path = os.path.join(filepath, speaker_id)
transcription_path = os.path.join(dir_path, "script~")
with open(transcription_path, "r+") as f:
for line in f:
audio_id = line[2:8]
text = line[9:].strip()
wav_path = os.path.join(dir_path, "{}.wav".format(audio_id))
if os.path.exists(wav_path):
if self.config.schema == "source":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": text,
}
yield audio_id, ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": text,
"metadata": {
"speaker_age": None,
"speaker_gender": None,
}
}
yield audio_id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|