|
import json |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = r"""\ |
|
@article{clark-etal-2020-tydi, |
|
title = "{T}y{D}i {QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages", |
|
author = "Clark, Jonathan H. and |
|
Choi, Eunsol and |
|
Collins, Michael and |
|
Garrette, Dan and |
|
Kwiatkowski, Tom and |
|
Nikolaev, Vitaly and |
|
Palomaki, Jennimaria", |
|
editor = "Johnson, Mark and |
|
Roark, Brian and |
|
Nenkova, Ani", |
|
journal = "Transactions of the Association for Computational Linguistics", |
|
volume = "8", |
|
year = "2020", |
|
address = "Cambridge, MA", |
|
publisher = "MIT Press", |
|
url = "https://aclanthology.org/2020.tacl-1.30", |
|
doi = "10.1162/tacl_a_00317", |
|
pages = "454--470", |
|
abstract = "Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. |
|
We present TyDi QA{---}a question answering dataset covering 11 typologically diverse languages with 204K |
|
question-answer pairs. The languages of TyDi QA are diverse with regard to their typology{---}the set of |
|
linguistic features each language expresses{---}such that we expect models performing well on this set to |
|
generalize across a large number of the world{'}s languages. We present a quantitative analysis of the data |
|
quality and example-level qualitative linguistic analyses of observed language phenomena that would not be found |
|
in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are |
|
written by people who want to know the answer, but don{'}t know the answer yet, and the data is collected directly |
|
in each language without the use of translation.", |
|
} |
|
|
|
@inproceedings{cahyawijaya-etal-2021-indonlg, |
|
title = "{I}ndo{NLG}: Benchmark and Resources for Evaluating {I}ndonesian Natural Language Generation", |
|
author = "Cahyawijaya, Samuel and |
|
Winata, Genta Indra and |
|
Wilie, Bryan and |
|
Vincentio, Karissa and |
|
Li, Xiaohong and |
|
Kuncoro, Adhiguna and |
|
Ruder, Sebastian and |
|
Lim, Zhi Yuan and |
|
Bahar, Syafri and |
|
Khodra, Masayu and |
|
Purwarianti, Ayu and |
|
Fung, Pascale", |
|
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", |
|
month = nov, |
|
year = "2021", |
|
address = "Online and Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.emnlp-main.699", |
|
doi = "10.18653/v1/2021.emnlp-main.699", |
|
pages = "8875--8898" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "tydiqa" |
|
|
|
_DESCRIPTION = """\ |
|
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. |
|
The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language |
|
expresses -- such that we expect models performing well on this set to generalize across a large number of the languages |
|
in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic |
|
information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but |
|
don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language |
|
without the use of translation (unlike MLQA and XQuAD). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/tydiqa" |
|
_LICENSE = Licenses.APACHE_2_0.value |
|
_HF_URL = "https://huggingface.co/datasets/tydiqa" |
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
_LANGUAGES = ["ind", "tha"] |
|
_LOCAL = False |
|
_SOURCE_VERSION = "1.0.0" |
|
_SOURCE_VERSION_P = "1.0.0" |
|
_SOURCE_VERSION_S = "1.1.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_URL = "https://storage.googleapis.com/tydiqa/" |
|
_PRIMARY_URLS = { |
|
"train": _URL + "v1.0/tydiqa-v1.0-train.jsonl.gz", |
|
"dev": _URL + "v1.0/tydiqa-v1.0-dev.jsonl.gz", |
|
} |
|
_SECONDARY_URLS = { |
|
"train": _URL + "v1.1/tydiqa-goldp-v1.1-train.json", |
|
"dev": _URL + "v1.1/tydiqa-goldp-v1.1-dev.json", |
|
} |
|
|
|
_SELECTP_DESP = """Passage selection task (SelectP): Given a list of the passages in the article, return either (a) the index of |
|
the passage that answers the question or (b) NULL if no such passage exists. |
|
""" |
|
_MINSPAN_DESP = """Minimal answer span task (MinSpan): Given the full text of an article, return one of (a) the start and end |
|
byte indices of the minimal span that completely answers the question; (b) YES or NO if the question requires |
|
a yes/no answer and we can draw a conclusion from the passage; (c) NULL if it is not possible to produce a |
|
minimal answer for this question.""" |
|
_GOLDP_DESP = """Gold passage task (GoldP): Given a passage that is guaranteed to contain the |
|
answer, predict the single contiguous span of characters that answers the question. This is more similar to |
|
existing reading comprehension datasets (as opposed to the information-seeking task outlined above). |
|
""" |
|
_ID_DESP = """{I}ndo{NLG}: Benchmark and Resources for Evaluating {I}ndonesian Natural Language Generation, is a benchmark |
|
for evaluating Indonesian natural language generation (NLG) systems. The question-answer pairs are collected |
|
for each language without using translation services. It uses the Indonesian data from the secondary Gold |
|
passage task of the TyDiQA dataset. As the original dataset only provides training and validation sets, |
|
TydiQA-ID randomly split off 15% of the training data and use it as the test set. |
|
""" |
|
|
|
|
|
def config_constructor(subset_id, schema, desc, version): |
|
return SEACrowdConfig(name=f"{_DATASETNAME}_{subset_id}_{schema}", description=desc, version=datasets.Version(version), schema=schema, subset_id=subset_id) |
|
|
|
|
|
class TydiqaDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
This is a main class of SEACrowd dataloader for TyDi QA, which is a question answering dataset covering 11 typologically |
|
diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology. |
|
Here we also specially provide the split on the primary and secondary task for SEA language like indonesian and thai. |
|
""" |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
|
|
config_constructor(subset_id="selectp", schema="source", desc=_SELECTP_DESP, version=_SOURCE_VERSION_P), |
|
config_constructor(subset_id="selectp_ind", schema="source", desc=_SELECTP_DESP, version=_SOURCE_VERSION_P), |
|
config_constructor(subset_id="selectp_tha", schema="source", desc=_SELECTP_DESP, version=_SOURCE_VERSION_P), |
|
|
|
config_constructor(subset_id="minspan", schema="source", desc=_MINSPAN_DESP, version=_SOURCE_VERSION_P), |
|
config_constructor(subset_id="minspan_ind", schema="source", desc=_MINSPAN_DESP, version=_SOURCE_VERSION_P), |
|
config_constructor(subset_id="minspan_tha", schema="source", desc=_MINSPAN_DESP, version=_SOURCE_VERSION_P), |
|
|
|
config_constructor(subset_id="goldp", schema="source", desc=_GOLDP_DESP, version=_SOURCE_VERSION_S), |
|
config_constructor(subset_id="goldp_ind", schema="source", desc=_GOLDP_DESP, version=_SOURCE_VERSION_S), |
|
|
|
config_constructor(subset_id="id", schema="source", desc=_ID_DESP, version=_SOURCE_VERSION_P), |
|
|
|
|
|
config_constructor(subset_id="selectp", schema="seacrowd_qa", desc=_SELECTP_DESP, version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="selectp_ind", schema="seacrowd_qa", desc=_SELECTP_DESP, version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="selectp_tha", schema="seacrowd_qa", desc=_SELECTP_DESP, version=_SEACROWD_VERSION), |
|
|
|
config_constructor(subset_id="minspan", schema="seacrowd_qa", desc=_MINSPAN_DESP, version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="minspan_ind", schema="seacrowd_qa", desc=_MINSPAN_DESP, version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="minspan_tha", schema="seacrowd_qa", desc=_MINSPAN_DESP, version=_SEACROWD_VERSION), |
|
|
|
config_constructor(subset_id="goldp", schema="seacrowd_qa", desc=_GOLDP_DESP, version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="goldp_ind", schema="seacrowd_qa", desc=_GOLDP_DESP, version=_SEACROWD_VERSION), |
|
|
|
config_constructor(subset_id="id", schema="seacrowd_qa", desc=_ID_DESP, version=_SEACROWD_VERSION), |
|
] |
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_id_source" |
|
|
|
def _info(self): |
|
if ("selectp" in self.config.name) or ("minspan" in self.config.name): |
|
if "source" in self.config.name: |
|
features = datasets.Features( |
|
{ |
|
"passage_answer_candidates": datasets.features.Sequence( |
|
{ |
|
"plaintext_start_byte": datasets.Value("int32"), |
|
"plaintext_end_byte": datasets.Value("int32"), |
|
} |
|
), |
|
"question_text": datasets.Value("string"), |
|
"document_title": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"annotations": datasets.features.Sequence( |
|
{ |
|
"passage_answer_candidate_index": datasets.Value("int32"), |
|
"minimal_answers_start_byte": datasets.Value("int32"), |
|
"minimal_answers_end_byte": datasets.Value("int32"), |
|
"yes_no_answer": datasets.Value("string"), |
|
} |
|
), |
|
"document_plaintext": datasets.Value("string"), |
|
"document_url": datasets.Value("string"), |
|
} |
|
) |
|
elif "seacrowd" in self.config.name: |
|
features = schemas.qa_features |
|
features["meta"] = { |
|
"passage_answer_candidates": datasets.features.Sequence( |
|
{ |
|
"plaintext_start_byte": datasets.Value("int32"), |
|
"plaintext_end_byte": datasets.Value("int32"), |
|
} |
|
), |
|
"annotations": datasets.features.Sequence( |
|
{ |
|
"passage_answer_candidate_index": datasets.Value("int32"), |
|
"minimal_answers_start_byte": datasets.Value("int32"), |
|
"minimal_answers_end_byte": datasets.Value("int32"), |
|
"yes_no_answer": datasets.Value("string"), |
|
} |
|
), |
|
"language": datasets.Value("string"), |
|
} |
|
|
|
elif ("goldp" in self.config.name) or ("tydiqa_id" in self.config.name): |
|
if "source" in self.config.name: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
) |
|
elif "seacrowd" in self.config.name: |
|
features = schemas.qa_features |
|
features["meta"] = { |
|
"answer_start": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
primary_downloaded = dl_manager.download_and_extract(_PRIMARY_URLS) |
|
secondary_downloaded = dl_manager.download_and_extract(_SECONDARY_URLS) |
|
|
|
if ("selectp" in self.config.name) or ("minspan" in self.config.name): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": primary_downloaded["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": primary_downloaded["dev"]}, |
|
), |
|
] |
|
|
|
elif "goldp" in self.config.name: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": secondary_downloaded["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": secondary_downloaded["dev"]}, |
|
), |
|
] |
|
elif "tydiqa_id" in self.config.name: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": secondary_downloaded["train"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": secondary_downloaded["train"], "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": secondary_downloaded["dev"], "split": "validation"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split=None): |
|
"""Yields examples.""" |
|
|
|
if ("selectp" in self.config.name) or ("minspan" in self.config.name): |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
passages = data["passage_answer_candidates"] |
|
end_byte = [passage["plaintext_end_byte"] for passage in passages] |
|
start_byte = [passage["plaintext_start_byte"] for passage in passages] |
|
title = data["document_title"] |
|
lang = data["language"] |
|
question = data["question_text"] |
|
annotations = data["annotations"] |
|
yes_no_answers = [annotation["yes_no_answer"] for annotation in annotations] |
|
min_answers_end_byte = [annotation["minimal_answer"]["plaintext_end_byte"] for annotation in annotations] |
|
min_answers_start_byte = [annotation["minimal_answer"]["plaintext_start_byte"] for annotation in annotations] |
|
passage_cand_answers = [annotation["passage_answer"]["candidate_index"] for annotation in annotations] |
|
doc = data["document_plaintext"] |
|
url = data["document_url"] |
|
if (self.config.name == "tydiqa_selectp_source") or (self.config.name == "tydiqa_minspan_source"): |
|
yield id_, primary_source_helper(id_, start_byte, end_byte, question, title, lang, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, doc, url) |
|
elif (self.config.name == "tydiqa_selectp_ind_source") or (self.config.name == "tydiqa_minspan_ind_source"): |
|
if lang == "indonesian": |
|
yield id_, primary_source_helper(id_, start_byte, end_byte, question, title, lang, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, doc, url) |
|
elif (self.config.name == "tydiqa_selectp_tha_source") or (self.config.name == "tydiqa_minspan_tha_source"): |
|
if lang == "thai": |
|
yield id_, primary_source_helper(id_, start_byte, end_byte, question, title, lang, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, doc, url) |
|
|
|
elif (self.config.name == "tydiqa_selectp_seacrowd_qa") or (self.config.name == "tydiqa_minspan_seacrowd_qa"): |
|
yield id_, primary_seacrowd_helper(id_, title, question, doc, start_byte, end_byte, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, lang) |
|
elif (self.config.name == "tydiqa_selectp_ind_seacrowd_qa") or (self.config.name == "tydiqa_minspan_ind_seacrowd_qa"): |
|
if lang == "indonesian": |
|
yield id_, primary_seacrowd_helper(id_, title, question, doc, start_byte, end_byte, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, lang) |
|
elif (self.config.name == "tydiqa_selectp_tha_seacrowd_qa") or (self.config.name == "tydiqa_minspan_tha_seacrowd_qa"): |
|
if lang == "thai": |
|
yield id_, primary_seacrowd_helper(id_, title, question, doc, start_byte, end_byte, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, lang) |
|
else: |
|
raise ValueError(f"No configs to match {self.config.name} in primary_task") |
|
|
|
elif ("goldp" in self.config.name) or ("tydiqa_id" in self.config.name): |
|
with (open(filepath, encoding="utf-8") as f): |
|
data = json.load(f) |
|
tydiqa_id_num = 0 |
|
for article in data["data"]: |
|
title = article.get("title", "").strip() |
|
for paragraph in article["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
id_ = qa["id"] |
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
if self.config.name == "tydiqa_goldp_source": |
|
yield id_, second_source_helper(id_, title, context, question, answer_starts, answers) |
|
|
|
elif self.config.name == "tydiqa_goldp_ind_source": |
|
if id_.startswith("indonesian"): |
|
yield id_, second_source_helper(id_, title, context, question, answer_starts, answers) |
|
elif self.config.name == "tydiqa_id_source": |
|
if id_.startswith("indonesian"): |
|
tydiqa_id_num += 1 |
|
if split == "train" and tydiqa_id_num >= 856: |
|
yield id_, second_source_helper(id_, title, context, question, answer_starts, answers) |
|
if split == "test" and tydiqa_id_num < 856: |
|
yield id_, second_source_helper(id_, title, context, question, answer_starts, answers) |
|
if split == "validation": |
|
yield id_, second_source_helper(id_, title, context, question, answer_starts, answers) |
|
|
|
elif self.config.name == "tydiqa_goldp_seacrowd_qa": |
|
yield id_, second_seacrowd_helper(id_, question, context, answers, answer_starts) |
|
elif self.config.name == "tydiqa_goldp_ind_seacrowd_qa": |
|
if id_.startswith("indonesian"): |
|
yield id_, second_seacrowd_helper(id_, question, context, answers, answer_starts) |
|
elif self.config.name == "tydiqa_id_seacrowd_qa": |
|
if id_.startswith("indonesian"): |
|
tydiqa_id_num += 1 |
|
if split == "train" and tydiqa_id_num >= 856: |
|
yield id_, second_seacrowd_helper(id_, question, context, answers, answer_starts) |
|
if split == "test" and tydiqa_id_num < 856: |
|
yield id_, second_seacrowd_helper(id_, question, context, answers, answer_starts) |
|
if split == "validation": |
|
yield id_, second_seacrowd_helper(id_, question, context, answers, answer_starts) |
|
else: |
|
raise ValueError(f"No configs to match {self.config.name} in secondary_task") |
|
|
|
|
|
def primary_source_helper(id_, start_byte, end_byte, question, title, lang, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, doc, url): |
|
return { |
|
"passage_answer_candidates": { |
|
"plaintext_start_byte": start_byte, |
|
"plaintext_end_byte": end_byte, |
|
}, |
|
"question_text": question, |
|
"document_title": title, |
|
"language": lang, |
|
"annotations": { |
|
"passage_answer_candidate_index": passage_cand_answers, |
|
"minimal_answers_start_byte": min_answers_start_byte, |
|
"minimal_answers_end_byte": min_answers_end_byte, |
|
"yes_no_answer": yes_no_answers, |
|
}, |
|
"document_plaintext": doc, |
|
"document_url": url, |
|
} |
|
|
|
|
|
def primary_seacrowd_helper(id_, title, question, doc, start_byte, end_byte, passage_cand_answers, min_answers_start_byte, min_answers_end_byte, yes_no_answers, lang): |
|
return { |
|
"id": str(id_), |
|
"question_id": title, |
|
"document_id": title, |
|
"question": question, |
|
"type": "multiple_choice", |
|
"choices": [""], |
|
"context": doc, |
|
"answer": [""], |
|
"meta": { |
|
"passage_answer_candidates": { |
|
"plaintext_start_byte": start_byte, |
|
"plaintext_end_byte": end_byte, |
|
}, |
|
"annotations": { |
|
"passage_answer_candidate_index": passage_cand_answers, |
|
"minimal_answers_start_byte": min_answers_start_byte, |
|
"minimal_answers_end_byte": min_answers_end_byte, |
|
"yes_no_answer": yes_no_answers, |
|
}, |
|
"language": lang, |
|
}, |
|
} |
|
|
|
|
|
def second_source_helper(id_, title, context, question, answer_starts, answers): |
|
return { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|
|
|
|
def second_seacrowd_helper(id_, question, context, answers, answer_starts): |
|
return { |
|
"id": id_, |
|
"question_id": id_, |
|
"document_id": id_, |
|
"question": question, |
|
"type": "abstractive", |
|
"choices": [], |
|
"context": context, |
|
"answer": answers, |
|
"meta": {"answer_start": answer_starts}, |
|
} |
|
|