Datasets:

Languages:
Vietnamese
ArXiv:
License:
uit_visd4sa / uit_visd4sa.py
holylovenia's picture
Upload uit_visd4sa.py with huggingface_hub
06f0a93 verified
# coding=utf-8
import json
from pathlib import Path
import re
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{thanh-etal-2021-span,
title = "Span Detection for Aspect-Based Sentiment Analysis in Vietnamese",
author = "Thanh, Kim Nguyen Thi and
Khai, Sieu Huynh and
Huynh, Phuc Pham and
Luc, Luong Phan and
Nguyen, Duc-Vu and
Van, Kiet Nguyen",
booktitle = "Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation",
year = "2021",
publisher = "Association for Computational Lingustics",
url = "https://aclanthology.org/2021.paclic-1.34",
pages = "318--328",
}
"""
_DATASETNAME = "uit_visd4sa"
_DESCRIPTION = """\
This dataset is designed for span detection for aspect-based sentiment analysis NLP task.
A Vietnamese dataset consisting of 35,396 human-annotated spans on 11,122 feedback
comments for evaluating span detection for aspect-based sentiment analysis for mobile e-commerce
"""
_HOMEPAGE = "https://github.com/kimkim00/UIT-ViSD4SA"
_LICENSE = Licenses.UNKNOWN.value
_LANGUAGES = ["vie"]
_URLS = {
"train": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/train.jsonl",
"dev": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/dev.jsonl",
"test": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/test.jsonl",
}
_SUPPORTED_TASKS = [Tasks.SPAN_BASED_ABSA]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LOCAL = False
def construct_label_classes():
IOB_tag = ["I", "O", "B"]
aspects = ["SCREEN", "CAMERA", "FEATURES", "BATTERY", "PERFORMANCE", "STORAGE", "DESIGN", "PRICE", "GENERAL", "SER&ACC"]
ratings = ["POSITIVE", "NEUTRAL", "NEGATIVE"]
label_classes = []
for iob in IOB_tag:
if iob == "O":
label_classes.append("O")
else:
for aspect in aspects:
for rating in ratings:
label_classes.append("{iob}-{aspect}#{rating}".format(iob=iob, aspect=aspect, rating=rating))
return label_classes
def construct_IOB_sequences(text, labels):
labels.sort()
word_start = [0] + [match.start() + 1 for match in re.finditer(" ", text)]
is_not_O = False
iob_sequence = []
word_count = 0
lb_count = 0
while word_count < len(word_start):
if lb_count == len(labels):
for x in range(word_count, len(word_start)):
iob_sequence.append("O")
break
if not is_not_O:
if word_start[word_count] >= labels[lb_count][0]:
is_not_O = True
iob_sequence.append("B-" + labels[lb_count][-1])
word_count += 1
else:
iob_sequence.append("O")
word_count += 1
else:
if word_start[word_count] > labels[lb_count][1]:
is_not_O = False
lb_count += 1
else:
iob_sequence.append("I-" + labels[lb_count][-1])
word_count += 1
return iob_sequence
class UITViSD4SADataset(datasets.GeneratorBasedBuilder):
"""This dataset is designed for span detection for aspect-based sentiment analysis NLP task.
A Vietnamese dataset consisting of 35,396 human-annotated spans on 11,122 feedback
comments for evaluating span detection for aspect-based sentiment analysis for mobile e-commerce"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description="uit_visd4sa source schema",
schema="source",
subset_id="uit_visd4sa",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_seq_label",
version=SEACROWD_VERSION,
description="uit_visd4sa SEACrowd schema",
schema="seacrowd_seq_label",
subset_id="uit_visd4sa",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32"), "aspect": datasets.Value("string"), "rating": datasets.Value("string")}),
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(construct_label_classes())
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
path_dict = dl_manager.download_and_extract(_URLS)
train_path, dev_path, test_path = path_dict["train"], path_dict["dev"], path_dict["test"]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dev_path,
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r") as f:
df = [json.loads(line) for line in f.readlines()]
f.close()
if self.config.schema == "source":
for _id, row in enumerate(df):
labels = row["labels"]
entry_labels = []
for lb in labels:
entry_labels.append({"start": lb[0], "end": lb[1], "aspect": lb[-1].split("#")[0], "rating": lb[-1].split("#")[-1]})
entry = {
"text": row["text"],
"label": entry_labels,
}
yield _id, entry
elif self.config.schema == "seacrowd_seq_label":
for _id, row in enumerate(df):
entry = {
"id": str(_id),
"tokens": row["text"].split(" "),
"labels": construct_IOB_sequences(row["text"], row["labels"]),
}
yield _id, entry