|
|
|
|
|
import json |
|
from pathlib import Path |
|
import re |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{thanh-etal-2021-span, |
|
title = "Span Detection for Aspect-Based Sentiment Analysis in Vietnamese", |
|
author = "Thanh, Kim Nguyen Thi and |
|
Khai, Sieu Huynh and |
|
Huynh, Phuc Pham and |
|
Luc, Luong Phan and |
|
Nguyen, Duc-Vu and |
|
Van, Kiet Nguyen", |
|
booktitle = "Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation", |
|
year = "2021", |
|
publisher = "Association for Computational Lingustics", |
|
url = "https://aclanthology.org/2021.paclic-1.34", |
|
pages = "318--328", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "uit_visd4sa" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is designed for span detection for aspect-based sentiment analysis NLP task. |
|
A Vietnamese dataset consisting of 35,396 human-annotated spans on 11,122 feedback |
|
comments for evaluating span detection for aspect-based sentiment analysis for mobile e-commerce |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/kimkim00/UIT-ViSD4SA" |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/train.jsonl", |
|
"dev": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/dev.jsonl", |
|
"test": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/test.jsonl", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPAN_BASED_ABSA] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LOCAL = False |
|
|
|
|
|
def construct_label_classes(): |
|
IOB_tag = ["I", "O", "B"] |
|
aspects = ["SCREEN", "CAMERA", "FEATURES", "BATTERY", "PERFORMANCE", "STORAGE", "DESIGN", "PRICE", "GENERAL", "SER&ACC"] |
|
ratings = ["POSITIVE", "NEUTRAL", "NEGATIVE"] |
|
label_classes = [] |
|
for iob in IOB_tag: |
|
if iob == "O": |
|
label_classes.append("O") |
|
else: |
|
for aspect in aspects: |
|
for rating in ratings: |
|
label_classes.append("{iob}-{aspect}#{rating}".format(iob=iob, aspect=aspect, rating=rating)) |
|
return label_classes |
|
|
|
|
|
def construct_IOB_sequences(text, labels): |
|
labels.sort() |
|
word_start = [0] + [match.start() + 1 for match in re.finditer(" ", text)] |
|
is_not_O = False |
|
iob_sequence = [] |
|
word_count = 0 |
|
lb_count = 0 |
|
|
|
while word_count < len(word_start): |
|
if lb_count == len(labels): |
|
for x in range(word_count, len(word_start)): |
|
iob_sequence.append("O") |
|
break |
|
if not is_not_O: |
|
if word_start[word_count] >= labels[lb_count][0]: |
|
is_not_O = True |
|
iob_sequence.append("B-" + labels[lb_count][-1]) |
|
word_count += 1 |
|
else: |
|
iob_sequence.append("O") |
|
word_count += 1 |
|
else: |
|
if word_start[word_count] > labels[lb_count][1]: |
|
is_not_O = False |
|
lb_count += 1 |
|
else: |
|
iob_sequence.append("I-" + labels[lb_count][-1]) |
|
word_count += 1 |
|
return iob_sequence |
|
|
|
|
|
class UITViSD4SADataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset is designed for span detection for aspect-based sentiment analysis NLP task. |
|
A Vietnamese dataset consisting of 35,396 human-annotated spans on 11,122 feedback |
|
comments for evaluating span detection for aspect-based sentiment analysis for mobile e-commerce""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description="uit_visd4sa source schema", |
|
schema="source", |
|
subset_id="uit_visd4sa", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description="uit_visd4sa SEACrowd schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="uit_visd4sa", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32"), "aspect": datasets.Value("string"), "rating": datasets.Value("string")}), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(construct_label_classes()) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
path_dict = dl_manager.download_and_extract(_URLS) |
|
train_path, dev_path, test_path = path_dict["train"], path_dict["dev"], path_dict["test"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dev_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, "r") as f: |
|
df = [json.loads(line) for line in f.readlines()] |
|
f.close() |
|
if self.config.schema == "source": |
|
for _id, row in enumerate(df): |
|
labels = row["labels"] |
|
entry_labels = [] |
|
for lb in labels: |
|
entry_labels.append({"start": lb[0], "end": lb[1], "aspect": lb[-1].split("#")[0], "rating": lb[-1].split("#")[-1]}) |
|
entry = { |
|
"text": row["text"], |
|
"label": entry_labels, |
|
} |
|
yield _id, entry |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for _id, row in enumerate(df): |
|
entry = { |
|
"id": str(_id), |
|
"tokens": row["text"].split(" "), |
|
"labels": construct_IOB_sequences(row["text"], row["labels"]), |
|
} |
|
yield _id, entry |
|
|