# coding=utf-8 import json from pathlib import Path import re from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{thanh-etal-2021-span, title = "Span Detection for Aspect-Based Sentiment Analysis in Vietnamese", author = "Thanh, Kim Nguyen Thi and Khai, Sieu Huynh and Huynh, Phuc Pham and Luc, Luong Phan and Nguyen, Duc-Vu and Van, Kiet Nguyen", booktitle = "Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation", year = "2021", publisher = "Association for Computational Lingustics", url = "https://aclanthology.org/2021.paclic-1.34", pages = "318--328", } """ _DATASETNAME = "uit_visd4sa" _DESCRIPTION = """\ This dataset is designed for span detection for aspect-based sentiment analysis NLP task. A Vietnamese dataset consisting of 35,396 human-annotated spans on 11,122 feedback comments for evaluating span detection for aspect-based sentiment analysis for mobile e-commerce """ _HOMEPAGE = "https://github.com/kimkim00/UIT-ViSD4SA" _LICENSE = Licenses.UNKNOWN.value _LANGUAGES = ["vie"] _URLS = { "train": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/train.jsonl", "dev": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/dev.jsonl", "test": "https://raw.githubusercontent.com/kimkim00/UIT-ViSD4SA/main/data/test.jsonl", } _SUPPORTED_TASKS = [Tasks.SPAN_BASED_ABSA] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _LOCAL = False def construct_label_classes(): IOB_tag = ["I", "O", "B"] aspects = ["SCREEN", "CAMERA", "FEATURES", "BATTERY", "PERFORMANCE", "STORAGE", "DESIGN", "PRICE", "GENERAL", "SER&ACC"] ratings = ["POSITIVE", "NEUTRAL", "NEGATIVE"] label_classes = [] for iob in IOB_tag: if iob == "O": label_classes.append("O") else: for aspect in aspects: for rating in ratings: label_classes.append("{iob}-{aspect}#{rating}".format(iob=iob, aspect=aspect, rating=rating)) return label_classes def construct_IOB_sequences(text, labels): labels.sort() word_start = [0] + [match.start() + 1 for match in re.finditer(" ", text)] is_not_O = False iob_sequence = [] word_count = 0 lb_count = 0 while word_count < len(word_start): if lb_count == len(labels): for x in range(word_count, len(word_start)): iob_sequence.append("O") break if not is_not_O: if word_start[word_count] >= labels[lb_count][0]: is_not_O = True iob_sequence.append("B-" + labels[lb_count][-1]) word_count += 1 else: iob_sequence.append("O") word_count += 1 else: if word_start[word_count] > labels[lb_count][1]: is_not_O = False lb_count += 1 else: iob_sequence.append("I-" + labels[lb_count][-1]) word_count += 1 return iob_sequence class UITViSD4SADataset(datasets.GeneratorBasedBuilder): """This dataset is designed for span detection for aspect-based sentiment analysis NLP task. A Vietnamese dataset consisting of 35,396 human-annotated spans on 11,122 feedback comments for evaluating span detection for aspect-based sentiment analysis for mobile e-commerce""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description="uit_visd4sa source schema", schema="source", subset_id="uit_visd4sa", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_seq_label", version=SEACROWD_VERSION, description="uit_visd4sa SEACrowd schema", schema="seacrowd_seq_label", subset_id="uit_visd4sa", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "text": datasets.Value("string"), "label": datasets.Sequence({"start": datasets.Value("int32"), "end": datasets.Value("int32"), "aspect": datasets.Value("string"), "rating": datasets.Value("string")}), } ) elif self.config.schema == "seacrowd_seq_label": features = schemas.seq_label_features(construct_label_classes()) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" path_dict = dl_manager.download_and_extract(_URLS) train_path, dev_path, test_path = path_dict["train"], path_dict["dev"], path_dict["test"] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": dev_path, }, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" with open(filepath, "r") as f: df = [json.loads(line) for line in f.readlines()] f.close() if self.config.schema == "source": for _id, row in enumerate(df): labels = row["labels"] entry_labels = [] for lb in labels: entry_labels.append({"start": lb[0], "end": lb[1], "aspect": lb[-1].split("#")[0], "rating": lb[-1].split("#")[-1]}) entry = { "text": row["text"], "label": entry_labels, } yield _id, entry elif self.config.schema == "seacrowd_seq_label": for _id, row in enumerate(df): entry = { "id": str(_id), "tokens": row["text"].split(" "), "labels": construct_IOB_sequences(row["text"], row["labels"]), } yield _id, entry