holylovenia
commited on
Commit
•
a4ad37c
1
Parent(s):
d14fbc6
Upload vilexnorm.py with huggingface_hub
Browse files- vilexnorm.py +176 -0
vilexnorm.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
The ViLexNorm corpus is a collection of comment pairs in Vietnamese, designed for the task of lexical normalization. The corpus contains 10,467 comment pairs, carefully curated and annotated for lexical normalization purposes.
|
18 |
+
These comment pairs are partitioned into three subsets: training, development, and test, distributed in an 8:1:1 ratio.
|
19 |
+
"""
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Dict, List, Tuple
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
import pandas as pd
|
25 |
+
|
26 |
+
from seacrowd.utils import schemas
|
27 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
28 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@inproceedings{nguyen-etal-2024-vilexnorm,
|
32 |
+
title = "{V}i{L}ex{N}orm: A Lexical Normalization Corpus for {V}ietnamese Social Media Text",
|
33 |
+
author = "Nguyen, Thanh-Nhi and
|
34 |
+
Le, Thanh-Phong and
|
35 |
+
Nguyen, Kiet",
|
36 |
+
editor = "Graham, Yvette and
|
37 |
+
Purver, Matthew",
|
38 |
+
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
39 |
+
month = mar,
|
40 |
+
year = "2024",
|
41 |
+
address = "St. Julian{'}s, Malta",
|
42 |
+
publisher = "Association for Computational Linguistics",
|
43 |
+
url = "https://aclanthology.org/2024.eacl-long.85",
|
44 |
+
pages = "1421--1437",
|
45 |
+
abstract = "Lexical normalization, a fundamental task in Natural Language Processing (NLP), involves the transformation of words into their canonical forms. This process has been proven to benefit various downstream NLP tasks greatly.
|
46 |
+
In this work, we introduce Vietnamese Lexical Normalization (ViLexNorm), the first-ever corpus developed for the Vietnamese lexical normalization task. The corpus comprises over 10,000 pairs of sentences meticulously annotated
|
47 |
+
by human annotators, sourced from public comments on Vietnam{'}s most popular social media platforms. Various methods were used to evaluate our corpus, and the best-performing system achieved a result of 57.74% using
|
48 |
+
the Error Reduction Rate (ERR) metric (van der Goot, 2019a) with the Leave-As-Is (LAI) baseline. For extrinsic evaluation, employing the model trained on ViLexNorm demonstrates the positive impact of the Vietnamese lexical normalization task
|
49 |
+
on other NLP tasks. Our corpus is publicly available exclusively for research purposes.",
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_DATASETNAME = "vilexnorm"
|
54 |
+
|
55 |
+
_DESCRIPTION = """\
|
56 |
+
The ViLexNorm corpus is a collection of comment pairs in Vietnamese, designed for the task of lexical normalization. The corpus contains 10,467 comment pairs, carefully curated and annotated for lexical normalization purposes.
|
57 |
+
These comment pairs are partitioned into three subsets: training, development, and test, distributed in an 8:1:1 ratio.
|
58 |
+
"""
|
59 |
+
|
60 |
+
_HOMEPAGE = "https://github.com/ngxtnhi/ViLexNorm"
|
61 |
+
|
62 |
+
_LANGUAGES = ["vie"]
|
63 |
+
|
64 |
+
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
|
65 |
+
|
66 |
+
_LOCAL = False
|
67 |
+
|
68 |
+
_URLS = {
|
69 |
+
"train": "https://raw.githubusercontent.com/ngxtnhi/ViLexNorm/main/data/train.csv",
|
70 |
+
"dev": "https://raw.githubusercontent.com/ngxtnhi/ViLexNorm/main/data/dev.csv",
|
71 |
+
"test": "https://raw.githubusercontent.com/ngxtnhi/ViLexNorm/main/data/test.csv",
|
72 |
+
}
|
73 |
+
|
74 |
+
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM]
|
75 |
+
|
76 |
+
_SOURCE_VERSION = "1.0.0"
|
77 |
+
|
78 |
+
_SEACROWD_VERSION = "2024.06.20"
|
79 |
+
|
80 |
+
|
81 |
+
class VilexnormDataset(datasets.GeneratorBasedBuilder):
|
82 |
+
"""The ViLexNorm corpus is a collection of comment pairs in Vietnamese, designed for the task of lexical normalization. The corpus contains 10,467 comment pairs, carefully curated and annotated for lexical normalization purposes.
|
83 |
+
These comment pairs are partitioned into three subsets: training, development, and test, distributed in an 8:1:1 ratio."""
|
84 |
+
|
85 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
86 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
87 |
+
|
88 |
+
BUILDER_CONFIGS = [
|
89 |
+
SEACrowdConfig(
|
90 |
+
name=f"{_DATASETNAME}_source",
|
91 |
+
version=SOURCE_VERSION,
|
92 |
+
description=f"{_DATASETNAME} source schema",
|
93 |
+
schema="source",
|
94 |
+
subset_id=f"{_DATASETNAME}",
|
95 |
+
),
|
96 |
+
SEACrowdConfig(
|
97 |
+
name=f"{_DATASETNAME}_seacrowd_t2t",
|
98 |
+
version=SEACROWD_VERSION,
|
99 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
100 |
+
schema="seacrowd_t2t",
|
101 |
+
subset_id=f"{_DATASETNAME}",
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
106 |
+
|
107 |
+
def _info(self) -> datasets.DatasetInfo:
|
108 |
+
|
109 |
+
if self.config.schema == "source":
|
110 |
+
features = datasets.Features(
|
111 |
+
{
|
112 |
+
"id": datasets.Value("int32"),
|
113 |
+
"original": datasets.Value("string"),
|
114 |
+
"normalized": datasets.Value("string"),
|
115 |
+
}
|
116 |
+
)
|
117 |
+
|
118 |
+
elif self.config.schema == "seacrowd_t2t":
|
119 |
+
features = schemas.text2text_features
|
120 |
+
|
121 |
+
return datasets.DatasetInfo(
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
features=features,
|
124 |
+
homepage=_HOMEPAGE,
|
125 |
+
license=_LICENSE,
|
126 |
+
citation=_CITATION,
|
127 |
+
)
|
128 |
+
|
129 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
130 |
+
"""Returns SplitGenerators."""
|
131 |
+
|
132 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
133 |
+
|
134 |
+
return [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TRAIN,
|
137 |
+
gen_kwargs={
|
138 |
+
"filepath": data_dir["train"],
|
139 |
+
},
|
140 |
+
),
|
141 |
+
datasets.SplitGenerator(
|
142 |
+
name=datasets.Split.TEST,
|
143 |
+
gen_kwargs={
|
144 |
+
"filepath": data_dir["test"],
|
145 |
+
},
|
146 |
+
),
|
147 |
+
datasets.SplitGenerator(
|
148 |
+
name=datasets.Split.VALIDATION,
|
149 |
+
gen_kwargs={
|
150 |
+
"filepath": data_dir["dev"],
|
151 |
+
},
|
152 |
+
),
|
153 |
+
]
|
154 |
+
|
155 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
156 |
+
"""Yields examples as (key, example) tuples."""
|
157 |
+
|
158 |
+
df = pd.read_csv(filepath)
|
159 |
+
|
160 |
+
if self.config.schema == "source":
|
161 |
+
for i, row in df.iterrows():
|
162 |
+
yield i, {
|
163 |
+
"id": i,
|
164 |
+
"original": row["original"],
|
165 |
+
"normalized": row["normalized"],
|
166 |
+
}
|
167 |
+
|
168 |
+
elif self.config.schema == "seacrowd_t2t":
|
169 |
+
for i, row in df.iterrows():
|
170 |
+
yield i, {
|
171 |
+
"id": str(i),
|
172 |
+
"text_1": row["original"],
|
173 |
+
"text_2": row["normalized"],
|
174 |
+
"text_1_name": "original",
|
175 |
+
"text_2_name": "normalized",
|
176 |
+
}
|