|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{nguyen-etal-2018-introducing, |
|
title = "Introducing Two {V}ietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness", |
|
author = "Nguyen, Kim Anh and |
|
Schulte im Walde, Sabine and |
|
Vu, Ngoc Thang", |
|
editor = "Walker, Marilyn and |
|
Ji, Heng and |
|
Stent, Amanda", |
|
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)", |
|
month = jun, |
|
year = "2018", |
|
address = "New Orleans, Louisiana", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/N18-2032", |
|
doi = "10.18653/v1/N18-2032", |
|
pages = "199--205" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "visim400" |
|
|
|
_DESCRIPTION = """\ |
|
ViSim-400 is a Vietnamese dataset of semantic relation \ |
|
pairs for evaluation of models that reflect the \ |
|
continuum between similarity and relatedness. |
|
|
|
We choose 'Sim2' instead of 'Sim1' for the label output of \ |
|
our SEACrowd dataloader schema because it's been normalized to [1, 10]. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/vnese-sem-datasets/" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = {_DATASETNAME: "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ViSim400Dataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
ViSim-400 is a Vietnamese dataset of semantic relation \ |
|
pairs for evaluation of models that reflect the \ |
|
continuum between similarity and relatedness. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "pairs_score" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=_SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=_SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"Word1": datasets.Value("string"), |
|
"Word2": datasets.Value("string"), |
|
"POS": datasets.Value("string"), |
|
"Sim1": datasets.Value("string"), |
|
"Sim2": datasets.Value("string"), |
|
"STD": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.pairs_features_score() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "ViData/ViSim-400/Visim-400.txt"), |
|
"split": "test", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, "r", encoding="utf-8") as file: |
|
lines = file.readlines() |
|
|
|
data = [] |
|
for line in lines: |
|
columns = line.strip().split("\t") |
|
data.append(columns) |
|
|
|
df = pd.DataFrame(data[1:], columns=data[0]) |
|
|
|
for index, row in df.iterrows(): |
|
|
|
if self.config.schema == "source": |
|
example = row.to_dict() |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
|
|
example = { |
|
"id": str(index), |
|
"text_1": str(row["Word1"]), |
|
"text_2": str(row["Word2"]), |
|
|
|
"label": str(row["Sim2"]), |
|
} |
|
|
|
yield index, example |
|
|