import os from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{nguyen-etal-2018-introducing, title = "Introducing Two {V}ietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness", author = "Nguyen, Kim Anh and Schulte im Walde, Sabine and Vu, Ngoc Thang", editor = "Walker, Marilyn and Ji, Heng and Stent, Amanda", booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)", month = jun, year = "2018", address = "New Orleans, Louisiana", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/N18-2032", doi = "10.18653/v1/N18-2032", pages = "199--205" } """ _DATASETNAME = "visim400" _DESCRIPTION = """\ ViSim-400 is a Vietnamese dataset of semantic relation \ pairs for evaluation of models that reflect the \ continuum between similarity and relatedness. We choose 'Sim2' instead of 'Sim1' for the label output of \ our SEACrowd dataloader schema because it's been normalized to [1, 10]. """ _HOMEPAGE = "https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/vnese-sem-datasets/" _LANGUAGES = ["vie"] _LICENSE = Licenses.CC_BY_NC_SA_4_0.value _LOCAL = False _URLS = {_DATASETNAME: "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip"} _SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class ViSim400Dataset(datasets.GeneratorBasedBuilder): """ ViSim-400 is a Vietnamese dataset of semantic relation \ pairs for evaluation of models that reflect the \ continuum between similarity and relatedness. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "pairs_score" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=_SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=_SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "Word1": datasets.Value("string"), "Word2": datasets.Value("string"), "POS": datasets.Value("string"), "Sim1": datasets.Value("string"), "Sim2": datasets.Value("string"), "STD": datasets.Value("string"), } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.pairs_features_score() return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME]) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, "ViData/ViSim-400/Visim-400.txt"), "split": "test", }, ) ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" with open(filepath, "r", encoding="utf-8") as file: lines = file.readlines() data = [] for line in lines: columns = line.strip().split("\t") data.append(columns) df = pd.DataFrame(data[1:], columns=data[0]) for index, row in df.iterrows(): if self.config.schema == "source": example = row.to_dict() elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": example = { "id": str(index), "text_1": str(row["Word1"]), "text_2": str(row["Word2"]), # I choose Sim2 instead of Sim1 because it's been normalized to [1, 10] "label": str(row["Sim2"]), } yield index, example