|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{luong-vu-2016-non, |
|
title = "A non-expert {K}aldi recipe for {V}ietnamese Speech Recognition System", |
|
author = "Luong, Hieu-Thi and |
|
Vu, Hai-Quan", |
|
editor = "Murakami, Yohei and |
|
Lin, Donghui and |
|
Ide, Nancy and |
|
Pustejovsky, James", |
|
booktitle = "Proceedings of the Third International Workshop on Worldwide Language Service |
|
Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for |
|
Human Language Technologies ({WLSI}/{OIAF}4{HLT}2016)", |
|
month = dec, |
|
year = "2016", |
|
address = "Osaka, Japan", |
|
publisher = "The COLING 2016 Organizing Committee", |
|
url = "https://aclanthology.org/W16-5207", |
|
pages = "51--55", |
|
abstract = "In this paper we describe a non-expert setup for Vietnamese speech recognition |
|
system using Kaldi toolkit. We collected a speech corpus over fifteen hours from about fifty |
|
Vietnamese native speakers and using it to test the feasibility of our setup. The essential |
|
linguistic components for the Automatic Speech Recognition (ASR) system was prepared basing |
|
on the written form of the language instead of expertise knowledge on linguistic and phonology |
|
as commonly seen in rich resource languages like English. The modeling of tones by integrating |
|
them into the phoneme and using the phonetic decision tree is also discussed. Experimental |
|
results showed this setup for ASR systems does yield competitive results while still have |
|
potentials for further improvements.", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vivos" |
|
|
|
_DESCRIPTION = """\ |
|
VIVOS is a Vietnamese speech corpus consisting of 15 hours of recording speech prepared for |
|
Automatic Speech Recognition task. This speech corpus is collected by recording speech data |
|
from more than 50 native Vietnamese volunteers. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/records/7068130" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"audio": "https://huggingface.co/datasets/vivos/resolve/main/data/vivos.tar.gz", |
|
"train_prompt": "https://huggingface.co/datasets/vivos/resolve/main/data/prompts-train.txt.gz", |
|
"test_prompt": "https://huggingface.co/datasets/vivos/resolve/main/data/prompts-test.txt.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
class VIVOSDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
VIVOS is a Vietnamese speech corpus from https://zenodo.org/records/7068130. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_sptext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_sptext", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"sentence": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
audio_path = dl_manager.download(_URLS["audio"]) |
|
train_prompt_path = dl_manager.download_and_extract(_URLS["train_prompt"]) |
|
test_prompt_path = dl_manager.download_and_extract(_URLS["test_prompt"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"prompts_path": train_prompt_path, |
|
"clips_path": "vivos/train/waves", |
|
"audio_files": dl_manager.iter_archive(audio_path), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"prompts_path": test_prompt_path, |
|
"clips_path": "vivos/test/waves", |
|
"audio_files": dl_manager.iter_archive(audio_path), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, prompts_path: Path, clips_path: Path, audio_files, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
examples = {} |
|
with open(prompts_path, encoding="utf-8") as f: |
|
if self.config.schema == "source": |
|
for row in f: |
|
data = row.strip().split(" ", 1) |
|
speaker_id = data[0].split("_")[0] |
|
audio_path = "/".join([clips_path, speaker_id, data[0] + ".wav"]) |
|
examples[audio_path] = { |
|
"speaker_id": speaker_id, |
|
"path": audio_path, |
|
"sentence": data[1], |
|
} |
|
elif self.config.schema == "seacrowd_sptext": |
|
audio_id = 0 |
|
for row in f: |
|
data = row.strip().split(" ", 1) |
|
speaker_id = data[0].split("_")[0] |
|
audio_path = "/".join([clips_path, speaker_id, data[0] + ".wav"]) |
|
examples[audio_path] = { |
|
"id": audio_id, |
|
"path": audio_path, |
|
"text": data[1], |
|
"speaker_id": speaker_id, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": None, |
|
}, |
|
} |
|
audio_id += 1 |
|
|
|
idx = 0 |
|
for path, f in audio_files: |
|
if path.startswith(clips_path): |
|
if path in examples: |
|
audio = {"path": path, "bytes": f.read()} |
|
yield idx, {**examples[path], "audio": audio} |
|
idx += 1 |
|
else: |
|
continue |