|
import csv |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
|
|
_CITATION = "" |
|
|
|
_DATASETNAME = "wongnai_reviews" |
|
|
|
_DESCRIPTION = """ |
|
Wongnai features over 200,000 restaurants, beauty salons, and spas across Thailand on its platform, with detailed |
|
information about each merchant and user reviews. Its over two million registered users can search for what’s top rated |
|
in Bangkok, follow their friends, upload photos, and do quick write-ups about the places they visit. Each write-up |
|
(review) also comes with a rating score ranging from 1-5 stars. The task here is to create a rating prediction model |
|
using only textual information. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/wongnai_reviews" |
|
|
|
_LANGUAGES = ["tha"] |
|
|
|
_LICENSE = Licenses.LGPL_3_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = {_DATASETNAME: "https://archive.org/download/wongnai_reviews/wongnai_reviews_withtest.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_CLASSES = ["1", "2", "3", "4", "5"] |
|
|
|
|
|
class WongnaiReviewsDataset(datasets.GeneratorBasedBuilder): |
|
"""WongnaiReviews consists reviews for over 200,000 restaurants, beauty salons, and spas across Thailand.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_text", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"review_body": datasets.Value("string"), |
|
"star_rating": datasets.ClassLabel(names=_CLASSES), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(label_names=_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "w_review_train.csv"), "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "w_review_test.csv"), "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
with open(filepath, encoding="utf-8") as f: |
|
spamreader = csv.reader(f, delimiter=";", quotechar='"') |
|
for i, row in enumerate(spamreader): |
|
yield i, {"review_body": row[0], "star_rating": row[1]} |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
with open(filepath, encoding="utf-8") as f: |
|
spamreader = csv.reader(f, delimiter=";", quotechar='"') |
|
for i, row in enumerate(spamreader): |
|
yield i, {"id": str(i), "text": row[0], "label": _CLASSES[int(row[1].strip()) - 1]} |
|
|