|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/abs-2204-02658, |
|
author = {Yingwen Fu and |
|
Jinyi Chen and |
|
Nankai Lin and |
|
Xixuan Huang and |
|
Xin Ying Qiu and |
|
Shengyi Jiang}, |
|
title = {Yunshan Cup 2020: Overview of the Part-of-Speech Tagging Task for |
|
Low-resourced Languages}, |
|
journal = {CoRR}, |
|
volume = {abs/2204.02658}, |
|
year = {2022}, |
|
url = {https://doi.org/10.48550/arXiv.2204.02658}, |
|
doi = {10.48550/arXiv.2204.02658}, |
|
eprinttype = {arXiv}, |
|
eprint = {2204.02658}, |
|
timestamp = {Tue, 12 Apr 2022 18:42:14 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2204-02658.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "yunshan_cup_2020" |
|
|
|
_DESCRIPTION = """\ |
|
Lao POS dataset containing 11,000 sentences was released as part of Yunshan-Cup-2020 evaluation track. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/GKLMIP/Yunshan-Cup-2020" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["lao"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/GKLMIP/Yunshan-Cup-2020/main/train.txt", |
|
"val": "https://raw.githubusercontent.com/GKLMIP/Yunshan-Cup-2020/main/dev.txt", |
|
"test": "https://raw.githubusercontent.com/GKLMIP/Yunshan-Cup-2020/main/test.txt", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.POS_TAGGING] |
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class YunshanCup2020Dataset(datasets.GeneratorBasedBuilder): |
|
"""Lao POS dataset containing 11,000 sentences was released as part of Yunshan-Cup-2020 evaluation track.""" |
|
|
|
class_labels = ["IAC", "COJ", "ONM", "PRE", "PRS", "V", "DBQ", "IBQ", "FIX", "N", "ADJ", "DMN", "IAQ", "CLF", "PRA", "DAN", "NEG", "NTR", "REL", "PVA", "TTL", "DAQ", "PRN", "ADV", "PUNCT", "CNM"] |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description="yunshan_cup_2020 source schema", |
|
schema="source", |
|
subset_id="yunshan_cup_2020", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description="yunshan_cup_2020 SEACrowd schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="yunshan_cup_2020", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "yunshan_cup_2020_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"pos_tags": [datasets.Value("string")], |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.class_labels) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
path_dict = dl_manager.download_and_extract(_URLS) |
|
train_path, val_path, test_path = path_dict["train"], path_dict["val"], path_dict["test"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": val_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
df = load_postagging_data(filepath) |
|
if self.config.schema == "source": |
|
for i, row in enumerate(df): |
|
ex = { |
|
"index": str(i), |
|
"tokens": row["sentence"], |
|
"pos_tags": row["label"], |
|
} |
|
yield i, ex |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
for i, row in enumerate(df): |
|
ex = { |
|
"id": str(i), |
|
"tokens": row["sentence"], |
|
"labels": row["label"], |
|
} |
|
yield i, ex |
|
|
|
|
|
def load_postagging_data(file_path): |
|
data = open(file_path, "r").readlines() |
|
dataset = [] |
|
sentence, seq_label = [], [] |
|
for line in data: |
|
if len(line.strip()) > 0: |
|
token, label = " ", "" |
|
if len(line.strip().split(" ")) < 2: |
|
label = line.strip() |
|
else: |
|
token, label = line[:-1].split(" ") |
|
sentence.append(token) |
|
seq_label.append(label) |
|
else: |
|
dataset.append({"sentence": sentence, "label": seq_label}) |
|
sentence = [] |
|
seq_label = [] |
|
return dataset |
|
|