File size: 5,772 Bytes
aafcf70
d35a703
 
 
 
 
 
 
 
aafcf70
 
 
 
 
 
 
4865626
 
 
 
 
 
d35a703
 
 
 
 
 
aafcf70
4865626
aafcf70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4865626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35a703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9c7e0
 
4b4cbd9
 
aafcf70
ac233c7
1e03964
6ce55f0
 
6445b65
 
a79f3f2
f217a5e
a1a2f92
6ce55f0
 
 
 
 
 
817e5ba
 
 
 
 
d1403a4
391789c
53ff71b
6a0e83a
eef92ec
a931e12
391789c
eef92ec
a1a2f92
d1403a4
 
 
 
 
 
 
 
17ee4b3
6ce55f0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language:
- ar
license: mit
size_categories:
- 100K<n<1M
task_categories:
- text-classification
pretty_name: Detect-Egyptian-Wikipedia-Articles
configs:
- config_name: balanced
  data_files:
  - split: train
    path: balanced/train-*
  - split: test
    path: balanced/test-*
- config_name: unbalanced
  data_files:
  - split: train
    path: unbalanced/train-*
  - split: test
    path: unbalanced/test-*
- config_name: uncategorized
  data_files:
  - split: train
    path: uncategorized/train-*
  - split: test
    path: uncategorized/test-*
dataset_info:
- config_name: balanced
  features:
  - name: page_title
    dtype: string
  - name: creation_date
    dtype: string
  - name: creator_name
    dtype: string
  - name: total_edits
    dtype: int64
  - name: total_editors
    dtype: int64
  - name: top_editors
    dtype: string
  - name: bots_editors_percentage
    dtype: float64
  - name: humans_editors_percentage
    dtype: float64
  - name: total_bytes
    dtype: int64
  - name: total_chars
    dtype: int64
  - name: total_words
    dtype: int64
  - name: page_text
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 32565713
    num_examples: 16000
  - name: test
    num_bytes: 8243228
    num_examples: 4000
  download_size: 18217654
  dataset_size: 40808941
- config_name: unbalanced
  features:
  - name: page_title
    dtype: string
  - name: creation_date
    dtype: string
  - name: creator_name
    dtype: string
  - name: total_edits
    dtype: int64
  - name: total_editors
    dtype: int64
  - name: top_editors
    dtype: string
  - name: bots_editors_percentage
    dtype: float64
  - name: humans_editors_percentage
    dtype: float64
  - name: total_bytes
    dtype: int64
  - name: total_chars
    dtype: int64
  - name: total_words
    dtype: int64
  - name: page_text
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 132509046
    num_examples: 133120
  - name: test
    num_bytes: 33292670
    num_examples: 33281
  download_size: 59449711
  dataset_size: 165801716
- config_name: uncategorized
  features:
  - name: page_title
    dtype: string
  - name: creation_date
    dtype: string
  - name: creator_name
    dtype: string
  - name: total_edits
    dtype: int64
  - name: total_editors
    dtype: int64
  - name: top_editors
    dtype: string
  - name: bots_editors_percentage
    dtype: float64
  - name: humans_editors_percentage
    dtype: float64
  - name: total_bytes
    dtype: int64
  - name: total_chars
    dtype: int64
  - name: total_words
    dtype: int64
  - name: page_text
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 607754601
    num_examples: 455411
  - name: test
    num_bytes: 151613029
    num_examples: 113853
  download_size: 141377798
  dataset_size: 759367630
source_datasets:
  - Egyptian Wikipedia
tags:   
- Wikipedia
---
<center><h1> Detect Egyptian Wikipedia *Template-translated* Articles </h1></center>

## Dataset Description:

We release the heuristically filtered, manually processed, and automatically classified Egyptian Arabic Wikipedia articles dataset. This dataset was used to develop a **web-based detection system** to automatically identify the template-translated articles on the Egyptian Arabic Wikipedia edition. The system is called [**Egyptian Arabic Wikipedia Scanner**](https://egyptian-wikipedia-scanner.streamlit.app/) and is hosted on Hugging Face Spaces, here: [**SaiedAlshahrani/Detect-Egyptian-Wikipedia-Articles**](https://huggingface.co/spaces/SaiedAlshahrani/Egyptian-Wikipedia-Scanner).

This dataset is introduced in a research paper titled "[***Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition***](https://arxiv.org/abs/2404.00565)", which is **accepted** at [LREC-COLING 2024](https://lrec-coling-2024.org/): [The 6th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT6)](https://osact-lrec.github.io/), and is currently released under an MIT license.


## Dataset Sources:


## Dataset Features:


## Dataset Subsets:
1. **Balanced**: A balanced subset of the dataset comprised 20K (10K for each class) and was split in the ratio of 80:20 for training and testing. This subset was filtered and processed using selected heuristic rules.
2. **Unbalanced**: An unbalanced subset of the dataset comprised 166K and was split in the ratio of 80:20 for training and testing. This subset is the rest of the filtered and processed articles using selected heuristic rules.
3. **Uncategorized**: Another unbalanced subset of the dataset comprised 569K and was split in the ratio of 80:20 for training and testing, but this was classified automatically using the `XGBoost` classifier trained using the balanced subset. 


## Citations:
Please cite our paper if you have used our dataset in any way 😊

### Short Citation:
Saied Alshahrani, Hesham Haroon, Ali Elfilali, Mariama Njie, and Jeanna Matthews. 2024. [Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition](https://arxiv.org/abs/2404.00565). *arXiv preprint arXiv:2404.00565*.

### BibTeX Citation:
```
@article{alshahrani2024leveraging,
      title={Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition}, 
      author={Saied Alshahrani and Hesham Haroon and Ali Elfilali and Mariama Njie and Jeanna Matthews},
      year={2024},
      eprint={2404.00565},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
      journal={arXiv preprint arXiv:2404.00565},
      url={https://arxiv.org/abs/2404.00565}
      }
```