Datasets:

ArXiv:
License:
gorold commited on
Commit
0e2f653
1 Parent(s): 47b3afb

update README

Browse files
Files changed (1) hide show
  1. README.md +83 -1
README.md CHANGED
@@ -5,4 +5,86 @@ task_categories:
5
  pretty_name: cloud
6
  size_categories:
7
  - 100M<n<1B
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  pretty_name: cloud
6
  size_categories:
7
  - 100M<n<1B
8
+ ---
9
+
10
+ # Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
11
+ [Paper](https://arxiv.org/abs/2310.05063) | [Code](https://github.com/SalesforceAIResearch/pretrain-time-series-cloudops)
12
+
13
+ Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain".
14
+
15
+ ```python
16
+ from datasets import load_dataset
17
+
18
+ dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
19
+ ```
20
+
21
+ ### azure_vm_traces_2017
22
+ ```python
23
+ DatasetDict({
24
+ train_test: Dataset({
25
+ features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
26
+ num_rows: 17568
27
+ })
28
+ pretrain: Dataset({
29
+ features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
30
+ num_rows: 159472
31
+ })
32
+ })
33
+ ```
34
+
35
+ ### borg_cluster_data_2011
36
+ ```python
37
+ DatasetDict({
38
+ train_test: Dataset({
39
+ features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
40
+ num_rows: 11117
41
+ })
42
+ pretrain: Dataset({
43
+ features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
44
+ num_rows: 143386
45
+ })
46
+ })
47
+ ```
48
+
49
+ ### alibaba_cluster_trace_2018
50
+ ```python
51
+ DatasetDict({
52
+ train_test: Dataset({
53
+ features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
54
+ num_rows: 6048
55
+ })
56
+ pretrain: Dataset({
57
+ features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
58
+ num_rows: 58409
59
+ })
60
+ })
61
+ ```
62
+
63
+ ## Acknowledgements
64
+ The datasets were processed from the following original sources. Please cite the original sources if you use the datasets.
65
+ * Azure VM Traces 2017
66
+ * Bianchini. Resource central: Understanding and predicting workloads for improved resource
67
+ management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems
68
+ Principles, pp. 153–167, 2017.
69
+ * https://github.com/Azure/AzurePublicDataset
70
+
71
+ * Borg Cluster Data 2011
72
+ * John Wilkes. More Google cluster data. Google research blog, November 2011. Posted at http:
73
+ //googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.
74
+ * https://github.com/google/cluster-data
75
+
76
+ * Alibaba Cluster Trace 2018
77
+ * Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. Who
78
+ limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In
79
+ Proceedings of the International Symposium on Quality of Service, pp. 1–10, 2019.
80
+ * https://github.com/alibaba/clusterdata
81
+
82
+ ## Citation
83
+ ```
84
+ @article{woo2023pushing,
85
+ title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
86
+ author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
87
+ journal={arXiv preprint arXiv:2310.05063},
88
+ year={2023}
89
+ }
90
+ ```