formatting
Browse files- cloudops_tsf.py +23 -12
cloudops_tsf.py
CHANGED
@@ -269,19 +269,22 @@ class CloudOpsTSF(datasets.ArrowBasedBuilder):
|
|
269 |
def _split_generators(self, dl_manager) -> list[datasets.SplitGenerator]:
|
270 |
generators = []
|
271 |
if self.config.train_test:
|
272 |
-
downloaded_files = dl_manager.download_and_extract(
|
|
|
|
|
273 |
generators.append(
|
274 |
datasets.SplitGenerator(
|
275 |
name=TRAIN_TEST if self.config.train_test else PRETRAIN,
|
276 |
-
gen_kwargs={"filepath": downloaded_files}
|
277 |
)
|
278 |
)
|
279 |
if self.config.pretrain:
|
280 |
-
downloaded_files = dl_manager.download_and_extract(
|
|
|
|
|
281 |
generators.append(
|
282 |
datasets.SplitGenerator(
|
283 |
-
name=PRETRAIN,
|
284 |
-
gen_kwargs={"filepath": downloaded_files}
|
285 |
)
|
286 |
)
|
287 |
return generators
|
@@ -294,13 +297,21 @@ class CloudOpsTSF(datasets.ArrowBasedBuilder):
|
|
294 |
schema = batch.schema
|
295 |
if self.config.include_metadata:
|
296 |
freq = pa.array([self.config.freq] * len(batch))
|
297 |
-
prediction_length = pa.array(
|
298 |
-
|
|
|
|
|
|
|
|
|
299 |
stride = pa.array([self.config.stride] * len(batch))
|
300 |
columns += [freq, prediction_length, rolling_evaluations, stride]
|
301 |
-
for pa_field in [
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
305 |
schema = schema.append(pa_field)
|
306 |
-
yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(
|
|
|
|
|
|
269 |
def _split_generators(self, dl_manager) -> list[datasets.SplitGenerator]:
|
270 |
generators = []
|
271 |
if self.config.train_test:
|
272 |
+
downloaded_files = dl_manager.download_and_extract(
|
273 |
+
f"{self.config.name}/train_test.zip"
|
274 |
+
)
|
275 |
generators.append(
|
276 |
datasets.SplitGenerator(
|
277 |
name=TRAIN_TEST if self.config.train_test else PRETRAIN,
|
278 |
+
gen_kwargs={"filepath": downloaded_files},
|
279 |
)
|
280 |
)
|
281 |
if self.config.pretrain:
|
282 |
+
downloaded_files = dl_manager.download_and_extract(
|
283 |
+
f"{self.config.name}/pretrain.zip"
|
284 |
+
)
|
285 |
generators.append(
|
286 |
datasets.SplitGenerator(
|
287 |
+
name=PRETRAIN, gen_kwargs={"filepath": downloaded_files}
|
|
|
288 |
)
|
289 |
)
|
290 |
return generators
|
|
|
297 |
schema = batch.schema
|
298 |
if self.config.include_metadata:
|
299 |
freq = pa.array([self.config.freq] * len(batch))
|
300 |
+
prediction_length = pa.array(
|
301 |
+
[self.config.prediction_length] * len(batch)
|
302 |
+
)
|
303 |
+
rolling_evaluations = pa.array(
|
304 |
+
[self.config.rolling_evaluations] * len(batch)
|
305 |
+
)
|
306 |
stride = pa.array([self.config.stride] * len(batch))
|
307 |
columns += [freq, prediction_length, rolling_evaluations, stride]
|
308 |
+
for pa_field in [
|
309 |
+
pa.field("freq", pa.string()),
|
310 |
+
pa.field("prediction_length", pa.int32()),
|
311 |
+
pa.field("rolling_evaluations", pa.int32()),
|
312 |
+
pa.field("stride", pa.int32()),
|
313 |
+
]:
|
314 |
schema = schema.append(pa_field)
|
315 |
+
yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(
|
316 |
+
columns, schema=schema
|
317 |
+
)
|