add loading script
Browse files- cloudops_tsf.py +304 -0
cloudops_tsf.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass, field
|
15 |
+
from typing import Iterator, Optional
|
16 |
+
from functools import cached_property
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import pandas as pd
|
20 |
+
import pyarrow as pa
|
21 |
+
import pyarrow.parquet as pq
|
22 |
+
from gluonts.dataset.field_names import FieldName
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@article{woo2023pushing,
|
26 |
+
title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
|
27 |
+
author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
|
28 |
+
journal={arXiv preprint arXiv:2310.05063},
|
29 |
+
year={2023}
|
30 |
+
}
|
31 |
+
"""
|
32 |
+
|
33 |
+
_URLS = {
|
34 |
+
"azure_vm_traces_2017": "azure_vm_traces_2017.parquet",
|
35 |
+
"borg_cluster_data_2011": "borg_cluster_data_2011.parquet",
|
36 |
+
"alibaba_cluster_trace_2018": "alibaba_cluster_trace_2018.parquet",
|
37 |
+
}
|
38 |
+
|
39 |
+
_CONFIGS = {
|
40 |
+
"azure_vm_traces_2017": {
|
41 |
+
"optional_fields": (
|
42 |
+
FieldName.FEAT_STATIC_CAT,
|
43 |
+
FieldName.FEAT_STATIC_REAL,
|
44 |
+
FieldName.PAST_FEAT_DYNAMIC_REAL,
|
45 |
+
),
|
46 |
+
"prediction_length": 48,
|
47 |
+
"freq": "5T",
|
48 |
+
"stride": 48,
|
49 |
+
"univariate": True,
|
50 |
+
"multivariate": False,
|
51 |
+
"rolling_evaluations": 12,
|
52 |
+
"test_split_date": pd.Period(
|
53 |
+
year=2016, month=12, day=13, hour=15, minute=55, freq="5T"
|
54 |
+
),
|
55 |
+
"_feat_static_cat_cardinalities": {
|
56 |
+
"train_test": (
|
57 |
+
("vm_id", 17568),
|
58 |
+
("subscription_id", 2713),
|
59 |
+
("deployment_id", 3255),
|
60 |
+
("vm_category", 3),
|
61 |
+
),
|
62 |
+
"pretrain": (
|
63 |
+
("vm_id", 177040),
|
64 |
+
("subscription_id", 5514),
|
65 |
+
("deployment_id", 15208),
|
66 |
+
("vm_category", 3),
|
67 |
+
),
|
68 |
+
},
|
69 |
+
"target_dim": 1,
|
70 |
+
"feat_static_real_dim": 3,
|
71 |
+
"past_feat_dynamic_real_dim": 2,
|
72 |
+
},
|
73 |
+
"borg_cluster_data_2011": {
|
74 |
+
"optional_fields": (
|
75 |
+
FieldName.FEAT_STATIC_CAT,
|
76 |
+
FieldName.PAST_FEAT_DYNAMIC_REAL,
|
77 |
+
),
|
78 |
+
"prediction_length": 48,
|
79 |
+
"freq": "5T",
|
80 |
+
"stride": 48,
|
81 |
+
"univariate": False,
|
82 |
+
"multivariate": True,
|
83 |
+
"rolling_evaluations": 12,
|
84 |
+
"test_split_date": pd.Period(
|
85 |
+
year=2011, month=5, day=28, hour=18, minute=55, freq="5T"
|
86 |
+
),
|
87 |
+
"_feat_static_cat_cardinalities": {
|
88 |
+
"train_test": (
|
89 |
+
("job_id", 850),
|
90 |
+
("task_id", 11117),
|
91 |
+
("user", 282),
|
92 |
+
("scheduling_class", 4),
|
93 |
+
("logical_job_name", 718),
|
94 |
+
),
|
95 |
+
"pretrain": (
|
96 |
+
("job_id", 6072),
|
97 |
+
("task_id", 154503),
|
98 |
+
("user", 518),
|
99 |
+
("scheduling_class", 4),
|
100 |
+
("logical_job_name", 3899),
|
101 |
+
),
|
102 |
+
},
|
103 |
+
"target_dim": 2,
|
104 |
+
"past_feat_dynamic_real_dim": 5,
|
105 |
+
},
|
106 |
+
"alibaba_cluster_trace_2018": {
|
107 |
+
"optional_fields": (
|
108 |
+
FieldName.FEAT_STATIC_CAT,
|
109 |
+
FieldName.PAST_FEAT_DYNAMIC_REAL,
|
110 |
+
),
|
111 |
+
"prediction_length": 48,
|
112 |
+
"freq": "5T",
|
113 |
+
"stride": 48,
|
114 |
+
"univariate": False,
|
115 |
+
"multivariate": True,
|
116 |
+
"rolling_evaluations": 12,
|
117 |
+
"test_split_date": pd.Period(
|
118 |
+
year=2018, month=1, day=8, hour=11, minute=55, freq="5T"
|
119 |
+
),
|
120 |
+
"_feat_static_cat_cardinalities": {
|
121 |
+
"train_test": (
|
122 |
+
("container_id", 6048),
|
123 |
+
("app_du", 1292),
|
124 |
+
),
|
125 |
+
"pretrain": (
|
126 |
+
("container_id", 64457),
|
127 |
+
("app_du", 9484),
|
128 |
+
),
|
129 |
+
},
|
130 |
+
"target_dim": 2,
|
131 |
+
"past_feat_dynamic_real_dim": 6,
|
132 |
+
},
|
133 |
+
}
|
134 |
+
|
135 |
+
PRETRAIN = datasets.splits.NamedSplit("pretrain")
|
136 |
+
TRAIN_TEST = datasets.splits.NamedSplit("train_test")
|
137 |
+
|
138 |
+
Cardinalities = tuple[tuple[str, int], ...]
|
139 |
+
|
140 |
+
|
141 |
+
@dataclass
|
142 |
+
class AIOpsTSFConfig(datasets.BuilderConfig):
|
143 |
+
"""BuilderConfig for AIOpsTSF."""
|
144 |
+
|
145 |
+
# load_dataset kwargs
|
146 |
+
train_test: bool = field(default=True, init=False)
|
147 |
+
pretrain: bool = field(default=False, init=False)
|
148 |
+
_include_metadata: tuple[str, ...] = field(default_factory=tuple, init=False)
|
149 |
+
|
150 |
+
# builder kwargs
|
151 |
+
prediction_length: int = field(default=None)
|
152 |
+
freq: str = field(default=None)
|
153 |
+
stride: int = field(default=None)
|
154 |
+
univariate: bool = field(default=None)
|
155 |
+
multivariate: bool = field(default=None)
|
156 |
+
optional_fields: tuple[str, ...] = field(default=None)
|
157 |
+
rolling_evaluations: int = field(default=None)
|
158 |
+
test_split_date: pd.Period = field(default=None)
|
159 |
+
_feat_static_cat_cardinalities: dict[str, Cardinalities] = field(
|
160 |
+
default_factory=dict
|
161 |
+
)
|
162 |
+
target_dim: int = field(default=1)
|
163 |
+
feat_static_real_dim: int = field(default=0)
|
164 |
+
past_feat_dynamic_real_dim: int = field(default=0)
|
165 |
+
|
166 |
+
METADATA = [
|
167 |
+
"freq",
|
168 |
+
"prediction_length",
|
169 |
+
"stride",
|
170 |
+
"rolling_evaluations",
|
171 |
+
]
|
172 |
+
|
173 |
+
@property
|
174 |
+
def include_metadata(self) -> tuple[str, ...]:
|
175 |
+
return self._include_metadata
|
176 |
+
|
177 |
+
@include_metadata.setter
|
178 |
+
def include_metadata(self, value: tuple[str, ...]):
|
179 |
+
assert all([v in self.METADATA for v in value]), (
|
180 |
+
f"Metadata: {value} is not supported, each item should be one of"
|
181 |
+
f" {self.METADATA}"
|
182 |
+
)
|
183 |
+
self._include_metadata = value
|
184 |
+
|
185 |
+
@cached_property
|
186 |
+
def feat_static_cat_cardinalities(self) -> Optional[list[int]]:
|
187 |
+
if FieldName.FEAT_STATIC_CAT not in self.optional_fields:
|
188 |
+
return None
|
189 |
+
|
190 |
+
if self.pretrain:
|
191 |
+
split = "pretrain"
|
192 |
+
elif self.train_test:
|
193 |
+
split = "train_test"
|
194 |
+
else:
|
195 |
+
raise ValueError(
|
196 |
+
"At least one of `train_test` and `pretrain` should be True"
|
197 |
+
)
|
198 |
+
return [c[1] for c in self._feat_static_cat_cardinalities[split]]
|
199 |
+
|
200 |
+
|
201 |
+
class AIOpsTSF(datasets.ArrowBasedBuilder):
|
202 |
+
VERSION = datasets.Version("1.0.0")
|
203 |
+
|
204 |
+
BUILDER_CONFIGS = []
|
205 |
+
for dataset, config in _CONFIGS.items():
|
206 |
+
BUILDER_CONFIGS.append(
|
207 |
+
AIOpsTSFConfig(name=dataset, version=VERSION, description="", **config)
|
208 |
+
)
|
209 |
+
|
210 |
+
def _info(self) -> datasets.DatasetInfo:
|
211 |
+
def sequence_feature(dtype: str, univar: bool) -> datasets.Sequence:
|
212 |
+
if univar:
|
213 |
+
return datasets.Sequence(datasets.Value(dtype))
|
214 |
+
return datasets.Sequence(datasets.Sequence(datasets.Value(dtype)))
|
215 |
+
|
216 |
+
features = {
|
217 |
+
FieldName.START: datasets.Value("timestamp[s]"),
|
218 |
+
FieldName.TARGET: sequence_feature("float32", self.config.univariate),
|
219 |
+
FieldName.ITEM_ID: datasets.Value("string"),
|
220 |
+
}
|
221 |
+
|
222 |
+
CAT_FEATS = (
|
223 |
+
FieldName.FEAT_STATIC_CAT,
|
224 |
+
FieldName.FEAT_DYNAMIC_CAT,
|
225 |
+
FieldName.PAST_FEAT_DYNAMIC,
|
226 |
+
)
|
227 |
+
REAL_FEATS = (
|
228 |
+
FieldName.FEAT_STATIC_REAL,
|
229 |
+
FieldName.FEAT_DYNAMIC_REAL,
|
230 |
+
FieldName.PAST_FEAT_DYNAMIC_REAL,
|
231 |
+
)
|
232 |
+
STATIC_FEATS = (FieldName.FEAT_STATIC_CAT, FieldName.FEAT_STATIC_REAL)
|
233 |
+
DYNAMIC_FEATS = (
|
234 |
+
FieldName.FEAT_DYNAMIC_CAT,
|
235 |
+
FieldName.FEAT_DYNAMIC_REAL,
|
236 |
+
FieldName.PAST_FEAT_DYNAMIC,
|
237 |
+
FieldName.PAST_FEAT_DYNAMIC_REAL,
|
238 |
+
)
|
239 |
+
|
240 |
+
for ts_field in self.config.optional_fields:
|
241 |
+
# Determine field dtype
|
242 |
+
if ts_field in CAT_FEATS:
|
243 |
+
dtype = "int32"
|
244 |
+
elif ts_field in REAL_FEATS:
|
245 |
+
dtype = "float32"
|
246 |
+
else:
|
247 |
+
raise ValueError(f"Invalid field: {ts_field}")
|
248 |
+
|
249 |
+
# Determine field shape
|
250 |
+
if ts_field in STATIC_FEATS:
|
251 |
+
univar = True
|
252 |
+
elif ts_field in DYNAMIC_FEATS:
|
253 |
+
univar = False
|
254 |
+
else:
|
255 |
+
raise ValueError(f"Invalid field: {ts_field}")
|
256 |
+
|
257 |
+
features[ts_field] = sequence_feature(dtype, univar)
|
258 |
+
|
259 |
+
for metadata in self.config.include_metadata:
|
260 |
+
if metadata == "freq":
|
261 |
+
features[metadata] = datasets.Value("string")
|
262 |
+
elif metadata in ("prediction_length", "stride", "rolling_evaluations"):
|
263 |
+
features[metadata] = datasets.Value("int32")
|
264 |
+
else:
|
265 |
+
raise ValueError(f"Invalid metadata: {metadata}")
|
266 |
+
|
267 |
+
features = datasets.Features(features)
|
268 |
+
|
269 |
+
return datasets.DatasetInfo(
|
270 |
+
features=features,
|
271 |
+
citation=_CITATION,
|
272 |
+
)
|
273 |
+
|
274 |
+
def _split_generators(self, dl_manager) -> list[datasets.SplitGenerator]:
|
275 |
+
split = 'train_test' if self.config.train_test else 'pretrain'
|
276 |
+
url = _URLS[self.config.name] + f'/split={split}'
|
277 |
+
downloaded_files = dl_manager.download(url)
|
278 |
+
|
279 |
+
generators = [
|
280 |
+
datasets.SplitGenerator(
|
281 |
+
name=TRAIN_TEST if self.config.train_test else PRETRAIN,
|
282 |
+
gen_kwargs={"filepath": downloaded_files}
|
283 |
+
)
|
284 |
+
]
|
285 |
+
return generators
|
286 |
+
|
287 |
+
def _generate_tables(self, filepath: str) -> Iterator[pa.Table]:
|
288 |
+
table = pq.read_table(filepath)
|
289 |
+
|
290 |
+
for batch in table.to_batches():
|
291 |
+
columns = batch.columns
|
292 |
+
schema = batch.schema
|
293 |
+
if self.config.include_metadata:
|
294 |
+
freq = pa.array([self.config.freq] * len(batch))
|
295 |
+
prediction_length = pa.array([self.config.prediction_length] * len(batch))
|
296 |
+
rolling_evaluations = pa.array([self.config.rolling_evaluations] * len(batch))
|
297 |
+
stride = pa.array([self.config.stride] * len(batch))
|
298 |
+
columns += [freq, prediction_length, rolling_evaluations, stride]
|
299 |
+
for pa_field in [pa.field('freq', pa.string()),
|
300 |
+
pa.field('prediction_length', pa.int32()),
|
301 |
+
pa.field('rolling_evaluations', pa.int32()),
|
302 |
+
pa.field('stride', pa.int32())]:
|
303 |
+
schema = schema.append(pa_field)
|
304 |
+
yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(columns, schema=schema)
|