Datasets:

Languages:
English
ArXiv:
License:
File size: 6,573 Bytes
4979160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b96d42
4979160
 
3b96d42
4979160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""A large crowd-sourced dataset for developing natural language interfaces for relational databases"""


import json
import os

import datasets


_CITATION = """\
@article{zhongSeq2SQL2017,
  author    = {Victor Zhong and
               Caiming Xiong and
               Richard Socher},
  title     = {Seq2SQL: Generating Structured Queries from Natural Language using
               Reinforcement Learning},
  journal   = {CoRR},
  volume    = {abs/1709.00103},
  year      = {2017}
}
"""

_DESCRIPTION = """\
A large crowd-sourced dataset for developing natural language interfaces for relational databases
"""

_DATA_URL = "https://github.com/salesforce/WikiSQL/raw/master/data.tar.bz2"

_AGG_OPS = ["", "MAX", "MIN", "COUNT", "SUM", "AVG"]
_COND_OPS = ["=", ">", "<", "OP"]


class WikiSQL(datasets.GeneratorBasedBuilder):
    """WikiSQL: A large crowd-sourced dataset for developing natural language interfaces for relational databases"""

    VERSION = datasets.Version("0.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "phase": datasets.Value("int32"),
                    "question": datasets.Value("string"),
                    "table": {
                        "header": datasets.features.Sequence(datasets.Value("string")),
                        "page_title": datasets.Value("string"),
                        "page_id": datasets.Value("string"),
                        "types": datasets.features.Sequence(datasets.Value("string")),
                        "id": datasets.Value("string"),
                        "section_title": datasets.Value("string"),
                        "caption": datasets.Value("string"),
                        "rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
                        "name": datasets.Value("string"),
                    },
                    "sql": {
                        "human_readable": datasets.Value("string"),
                        "sel": datasets.Value("int32"),
                        "agg": datasets.Value("int32"),
                        "conds": datasets.features.Sequence(
                            {
                                "column_index": datasets.Value("int32"),
                                "operator_index": datasets.Value("int32"),
                                "condition": datasets.Value("string"),
                            }
                        ),
                    },
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://github.com/salesforce/WikiSQL",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_DATA_URL)
        dl_dir = os.path.join(dl_dir, "data")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "main_filepath": os.path.join(dl_dir, "test.jsonl"),
                    "tables_filepath": os.path.join(dl_dir, "test.tables.jsonl"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "main_filepath": os.path.join(dl_dir, "dev.jsonl"),
                    "tables_filepath": os.path.join(dl_dir, "dev.tables.jsonl"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "main_filepath": os.path.join(dl_dir, "train.jsonl"),
                    "tables_filepath": os.path.join(dl_dir, "train.tables.jsonl"),
                },
            ),
        ]

    def _convert_to_human_readable(self, sel, agg, columns, conditions):
        """Make SQL query string. Based on https://github.com/salesforce/WikiSQL/blob/c2ed4f9b22db1cc2721805d53e6e76e07e2ccbdc/lib/query.py#L10"""

        rep = f"SELECT {_AGG_OPS[agg]} {columns[sel] if columns is not None else f'col{sel}'} FROM table"

        if conditions:
            rep += " WHERE " + " AND ".join([f"{columns[i]} {_COND_OPS[o]} {v}" for i, o, v in conditions])
        return " ".join(rep.split())

    def _generate_examples(self, main_filepath, tables_filepath):
        """Yields examples."""

        # Build dictionary to table_ids:tables
        with open(tables_filepath, encoding="utf-8") as f:
            tables = [json.loads(line) for line in f]
            id_to_tables = {x["id"]: x for x in tables}

        with open(main_filepath, encoding="utf-8") as f:
            for idx, line in enumerate(f):
                row = json.loads(line)
                row["table"] = id_to_tables[row["table_id"]]
                del row["table_id"]

                # Handle missing data
                row["table"]["page_title"] = row["table"].get("page_title", "")
                row["table"]["section_title"] = row["table"].get("section_title", "")
                row["table"]["caption"] = row["table"].get("caption", "")
                row["table"]["name"] = row["table"].get("name", "")
                row["table"]["page_id"] = str(row["table"].get("page_id", ""))

                # Fix row types
                row["table"]["rows"] = [[str(e) for e in r] for r in row["table"]["rows"]]

                # Get human-readable version
                row["sql"]["human_readable"] = self._convert_to_human_readable(
                    row["sql"]["sel"],
                    row["sql"]["agg"],
                    row["table"]["header"],
                    row["sql"]["conds"],
                )

                # Restructure sql->conds
                # - wikiSQL provides a tuple [column_index, operator_index, condition]
                #   as 'condition' can have 2 types (float or str) we convert to dict
                for i in range(len(row["sql"]["conds"])):
                    row["sql"]["conds"][i] = {
                        "column_index": row["sql"]["conds"][i][0],
                        "operator_index": row["sql"]["conds"][i][1],
                        "condition": str(row["sql"]["conds"][i][2]),
                    }
                yield idx, row