# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """covid_qa_cleaned_CS: Connor Heaton/Saptarshi Sengupta""" import json import os import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) # You can copy an official description _DESCRIPTION = """\ Cleaned version of COVID-QA containing fixes as mentioned in . """ _LICENSE = "Apache License 2.0" _URL = "https://github.com/saptarshi059/CDQA-v2-Auxilliary-Loss/blob/main/data/covid_qa_cleaned_CS/" _URLs = {"covid_qa_cleaned_CS": _URL + "covid_qa_cleaned_CS.json"} class CovidQADeepsetCleaned(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="covid_qa_cleaned_CS", version=VERSION, description="Cleaned version of COVID-QA (deepset) by Connor Heaton & Saptarshi Sengupta"), ] def _info(self): features = datasets.Features( { "document_id": datasets.Value("int32"), "context": datasets.Value("string"), "question": datasets.Value("string"), "is_impossible": datasets.Value("bool"), "id": datasets.Value("int32"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, license=_LICENSE, task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): #This code will be removed once the directory becomes public import requests url = 'https://raw.githubusercontent.com/saptarshi059/CDQA-v2-Auxilliary-Loss/main/data/covid_qa_cleaned_CS/covid_qa_cleaned_CS.json' auth = ('saptarshi059', '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') r = requests.get(url, auth=auth) os.mkdir('my_temp') with open('my_temp/covid_qa_cleaned_CS.json', 'w') as f: json.dump(r.json(), f) #url = _URLs[self.config.name] #downloaded_filepath = dl_manager.download_and_extract(r) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": 'my_temp/covid_qa_cleaned_CS.json'}, ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: covid_qa = json.load(f) for article in covid_qa["data"]: for paragraph in article["paragraphs"]: context = paragraph["context"].strip() document_id = paragraph["document_id"] for qa in paragraph["qas"]: question = qa["question"].strip() is_impossible = qa["is_impossible"] id_ = qa["id"] answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"].strip() for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "document_id": document_id, "context": context, "question": question, "is_impossible": is_impossible, "id": id_, "answers": { "answer_start": answer_starts, "text": answers, }, }