import csv import pandas as pd import datasets from sklearn.model_selection import train_test_split from datasets.tasks import TextClassification _DATASET_LABELS = ['NEGATIVE', 'POSITIVE', 'NEUTRAL'] class Custom(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description='', features=datasets.Features( { 'text': datasets.Value('string'), 'label': datasets.features.ClassLabel( names=_DATASET_LABELS ), } ), homepage='', citation='', task_templates=[ TextClassification(text_column='text', label_column='label') ], ) def _split_generators(self, dl_manager): data_path = dl_manager.download_and_extract('data.csv') records = pd.read_csv(data_path) train_df, val_df = train_test_split(records, test_size=0.2, random_state=42) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={'df': train_df} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={'df': val_df} ), ] def _generate_examples(self, df): for id_, row in df.iterrows(): text, label = row['text'], row['label'], label = _DATASET_LABELS.index(label) yield id_, {'text': text, 'label': label}