Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
File size: 4,849 Bytes
3707754
1984f0e
 
 
 
1785294
 
753ff5e
1785294
 
 
 
a4015c7
3707754
8036631
 
1984f0e
 
 
753ff5e
1984f0e
753ff5e
1984f0e
 
 
9689dfd
36a6ad2
1984f0e
9689dfd
36a6ad2
1984f0e
 
 
 
36a6ad2
1984f0e
 
 
753ff5e
1984f0e
 
 
 
8036631
 
 
 
 
 
 
1984f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753ff5e
1984f0e
 
 
753ff5e
1984f0e
753ff5e
 
 
 
 
 
 
 
 
 
1984f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
language:
- en
size_categories:
- 1B<n<10B
task_categories:
- text-generation
pretty_name: AgentSearch-V1
configs:
- config_name: default
  data_files:
  - split: train
    path: "**/*.parquet"
---
# Important Notice
**This dataset is just a sample. The real dataset will be uploaded after New Year's 2024. This early release is intended for Agent Search launching today, but the data is not yet finalized.**

### Getting Started

The AgentSearch-V1 dataset includes over one billion embeddings sourced from over 50 million high-quality documents. This extensive collection encompasses the majority of content from sources like Arxiv, Wikipedia, Project Gutenberg, and includes quality-filtered CC data.

To access and utilize the AgentSearch-V1 dataset, you can stream it via HuggingFace with the following Python code:

```python
from datasets import load_dataset
# To stream the entire dataset:
ds = load_dataset("SciPhi/AgentSearch-V1", data_files="**/*", streaming=True)

# Optional, stream just the "arxiv" dataset
ds = load_dataset("SciPhi/AgentSearch-V1", data_files="arxiv/*", streaming=True)
```

---

A full set of scripts to recreate the dataset from scratch can be found [here](https://github.com/SciPhi-AI/agent-search). [Synthesizer](https://github.com/SciPhi-AI/synthesizer) offers direct integration with AgentSearch and top LLM providers.

### Dataset Summary

We take a similar approach to RedPajama-v1 and divide AgentSearch into a number of categories.


| Dataset        | Token Count |
|----------------|-------------|
| Books          | TBD   |
| ArXiv          | TBD   |
| Wikipedia      | TBD   |
| StackExchange  | TBD   |
| OpenMath       | TBD   |
| Filtered Crawl | TBD   |
| Total          | TBD   |

### Languages

English.

## Dataset Structure

The raw dataset structure is as follows:

```json
{
    "url": ...,
    "title": ...,
    "metadata": {"url": "...", "timestamp": "...", "source": "...", "language": "...", ...},
    "text_chunks": ...,
    "embeddings": ...,
    "dataset": "github" | "books" | "arxiv" | "wikipedia" | "stackexchange" | "open-math" | "filtered-rp2"
}
```

The indexed dataset can be downloaded directly and is structured as a qdrant database dump, each entry has meta data {"url", "vector"}. In addition, there is a corresponding sqlite dataset which contains the mapping from urls onto embeddings, text chunks, and other metadata.

## Dataset Creation

This dataset was created as a step towards making humanities most important knowledge locally searchable and LLM optimal. It was created by filtering, cleaning, and augmenting locally publicly available datasets.

To cite our work, please use the following:

```
@software{SciPhi2023AgentSearch,
  author = {SciPhi},
  title = {AgentSearch [ΨΦ]: A Comprehensive Agent-First Framework and Dataset for Webscale Search},
  year = {2023},
  url = {https://github.com/SciPhi-AI/agent-search}
}
```

### Source Data

```
@ONLINE{wikidump,
    author = "Wikimedia Foundation",
    title  = "Wikimedia Downloads",
    url    = "https://dumps.wikimedia.org"
}
```

```
@misc{paster2023openwebmath,
      title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text},
      author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba},
      year={2023},
      eprint={2310.06786},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

```
@software{together2023redpajama,
  author = {Together Computer},
  title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
  month = April,
  year = 2023,
  url = {https://github.com/togethercomputer/RedPajama-Data}
}
```

### License
Please refer to the licenses of the data subsets you use.

* [Open-Web (Common Crawl Foundation Terms of Use)](https://commoncrawl.org/terms-of-use/full/)
* Books: [the_pile_books3 license](https://huggingface.co/datasets/the_pile_books3#licensing-information) and [pg19 license](https://huggingface.co/datasets/pg19#licensing-information)
* [ArXiv Terms of Use](https://info.arxiv.org/help/api/tou.html)
* [Wikipedia License](https://huggingface.co/datasets/wikipedia#licensing-information)
* [StackExchange license on the Internet Archive](https://archive.org/details/stackexchange)

<!--
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
-->