Commit
·
d993da1
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/byarticle/1.0.0/dummy_data.zip +3 -0
- dummy/bypublisher/1.0.0/dummy_data.zip +3 -0
- hyperpartisan_news_detection.py +153 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"byarticle": {"description": "Hyperpartisan News Detection was a dataset created for PAN @ SemEval 2019 Task 4.\nGiven a news article text, decide whether it follows a hyperpartisan argumentation, i.e., whether it exhibits blind, prejudiced, or unreasoning allegiance to one party, faction, cause, or person.\n\nThere are 2 parts:\n- byarticle: Labeled through crowdsourcing on an article basis. The data contains only articles for which a consensus among the crowdsourcing workers existed.\n- bypublisher: Labeled by the overall bias of the publisher as provided by BuzzFeed journalists or MediaBiasFactCheck.com.\n", "citation": "@article{kiesel2019data,\n title={Data for pan at semeval 2019 task 4: Hyperpartisan news detection},\n author={Kiesel, Johannes and Mestre, Maria and Shukla, Rishabh and Vincent, Emmanuel and Corney, David and Adineh, Payam and Stein, Benno and Potthast, Martin},\n year={2019}\n}\n", "homepage": "https://pan.webis.de/semeval19/semeval19-web/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "hyperpartisan": {"dtype": "bool", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "published_at": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}}}, "supervised_keys": {"input": "text", "output": "label"}, "builder_name": "hyperpartisan_news_detection", "config_name": "byarticle", "version": {"version_str": "1.0.0", "description": "Version Training and validation v1", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2803943, "num_examples": 645, "dataset_name": "hyperpartisan_news_detection"}}, "download_checksums": {"https://zenodo.org/record/1489920/files/articles-training-byarticle-20181122.zip?download=1": {"num_bytes": 971841, "checksum": "62b4a71275ef2724faddc74d6ff3d782ee9898c732cd66119c7976f6f5168990"}, "https://zenodo.org/record/1489920/files/ground-truth-training-byarticle-20181122.zip?download=1": {"num_bytes": 28511, "checksum": "0c02f4c33317287758e6fbbc976cbfd7a0978923899ddf30cb9dd2cd740af43c"}}, "download_size": 1000352, "post_processing_size": 0, "dataset_size": 2803943, "size_in_bytes": 3804295}, "bypublisher": {"description": "Hyperpartisan News Detection was a dataset created for PAN @ SemEval 2019 Task 4.\nGiven a news article text, decide whether it follows a hyperpartisan argumentation, i.e., whether it exhibits blind, prejudiced, or unreasoning allegiance to one party, faction, cause, or person.\n\nThere are 2 parts:\n- byarticle: Labeled through crowdsourcing on an article basis. The data contains only articles for which a consensus among the crowdsourcing workers existed.\n- bypublisher: Labeled by the overall bias of the publisher as provided by BuzzFeed journalists or MediaBiasFactCheck.com.\n", "citation": "@article{kiesel2019data,\n title={Data for pan at semeval 2019 task 4: Hyperpartisan news detection},\n author={Kiesel, Johannes and Mestre, Maria and Shukla, Rishabh and Vincent, Emmanuel and Corney, David and Adineh, Payam and Stein, Benno and Potthast, Martin},\n year={2019}\n}\n", "homepage": "https://pan.webis.de/semeval19/semeval19-web/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "hyperpartisan": {"dtype": "bool", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "published_at": {"dtype": "string", "id": null, "_type": "Value"}, "bias": {"num_classes": 5, "names": ["right", "right-center", "least", "left-center", "left"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "validation": {}}}, "supervised_keys": {"input": "text", "output": "label"}, "builder_name": "hyperpartisan_news_detection", "config_name": "bypublisher", "version": {"version_str": "1.0.0", "description": "Version Training and validation v1", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2805711609, "num_examples": 600000, "dataset_name": "hyperpartisan_news_detection"}, "validation": {"name": "validation", "num_bytes": 2805711609, "num_examples": 600000, "dataset_name": "hyperpartisan_news_detection"}}, "download_checksums": {"https://zenodo.org/record/1489920/files/articles-training-bypublisher-20181122.zip?download=1": {"num_bytes": 980769009, "checksum": "e5816b0c9fecd1a38f6cba8eb4f6f77d04637b5c6209e714b7ab32dc3bc24e28"}, "https://zenodo.org/record/1489920/files/ground-truth-training-bypublisher-20181122.zip?download=1": {"num_bytes": 22426411, "checksum": "f1c0494af86ff1e961479a63d432d649ccda875d302888f4d080dbec0382b1ef"}}, "download_size": 1003195420, "post_processing_size": 0, "dataset_size": 5611423218, "size_in_bytes": 6614618638}}
|
dummy/byarticle/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4cfb152137718e874609af37286a8294b3567cad8596f9fa261409f607e0c5
|
3 |
+
size 2701
|
dummy/bypublisher/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5f0d7b0938e500d03afeb9131dfc48af67b37cc0c7f66317df08d08999a732c
|
3 |
+
size 5337
|
hyperpartisan_news_detection.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Hyperpartisan News Detection"""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import os
|
22 |
+
import textwrap
|
23 |
+
import xml.etree.ElementTree as ET
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@article{kiesel2019data,
|
30 |
+
title={Data for pan at semeval 2019 task 4: Hyperpartisan news detection},
|
31 |
+
author={Kiesel, Johannes and Mestre, Maria and Shukla, Rishabh and Vincent, Emmanuel and Corney, David and Adineh, Payam and Stein, Benno and Potthast, Martin},
|
32 |
+
year={2019}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
Hyperpartisan News Detection was a dataset created for PAN @ SemEval 2019 Task 4.
|
38 |
+
Given a news article text, decide whether it follows a hyperpartisan argumentation, i.e., whether it exhibits blind, prejudiced, or unreasoning allegiance to one party, faction, cause, or person.
|
39 |
+
|
40 |
+
There are 2 parts:
|
41 |
+
- byarticle: Labeled through crowdsourcing on an article basis. The data contains only articles for which a consensus among the crowdsourcing workers existed.
|
42 |
+
- bypublisher: Labeled by the overall bias of the publisher as provided by BuzzFeed journalists or MediaBiasFactCheck.com.
|
43 |
+
"""
|
44 |
+
_URL_BASE = "https://zenodo.org/record/1489920/files/"
|
45 |
+
|
46 |
+
|
47 |
+
class HyperpartisanNewsDetection(datasets.GeneratorBasedBuilder):
|
48 |
+
"""Hyperpartisan News Detection Dataset."""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
51 |
+
BUILDER_CONFIGS = [
|
52 |
+
datasets.BuilderConfig(
|
53 |
+
name="byarticle",
|
54 |
+
version=datasets.Version("1.0.0", "Version Training and validation v1"),
|
55 |
+
description=textwrap.dedent(
|
56 |
+
"""
|
57 |
+
This part of the data (filename contains "byarticle") is labeled through crowdsourcing on an article basis.
|
58 |
+
The data contains only articles for which a consensus among the crowdsourcing workers existed. It contains
|
59 |
+
a total of 645 articles. Of these, 238 (37%) are hyperpartisan and 407 (63%) are not, We will use a similar
|
60 |
+
(but balanced!) test set. Again, none of the publishers in this set will occur in the test set.
|
61 |
+
"""
|
62 |
+
),
|
63 |
+
),
|
64 |
+
datasets.BuilderConfig(
|
65 |
+
name="bypublisher",
|
66 |
+
version=datasets.Version("1.0.0", "Version Training and validation v1"),
|
67 |
+
description=textwrap.dedent(
|
68 |
+
"""
|
69 |
+
This part of the data (filename contains "bypublisher") is labeled by the overall bias of the publisher as provided
|
70 |
+
by BuzzFeed journalists or MediaBiasFactCheck.com. It contains a total of 750,000 articles, half of which (375,000)
|
71 |
+
are hyperpartisan and half of which are not. Half of the articles that are hyperpartisan (187,500) are on the left side
|
72 |
+
of the political spectrum, half are on the right side. This data is split into a training set (80%, 600,000 articles) and
|
73 |
+
a validation set (20%, 150,000 articles), where no publisher that occurs in the training set also occurs in the validation
|
74 |
+
set. Similarly, none of the publishers in those sets will occur in the test set.
|
75 |
+
"""
|
76 |
+
),
|
77 |
+
),
|
78 |
+
]
|
79 |
+
|
80 |
+
def _info(self):
|
81 |
+
features = {
|
82 |
+
"text": datasets.Value("string"),
|
83 |
+
"title": datasets.Value("string"),
|
84 |
+
"hyperpartisan": datasets.Value("bool"),
|
85 |
+
"url": datasets.Value("string"),
|
86 |
+
"published_at": datasets.Value("string"),
|
87 |
+
}
|
88 |
+
|
89 |
+
if self.config.name == "bypublisher":
|
90 |
+
# Bias is only included in the bypublisher config
|
91 |
+
features["bias"] = datasets.ClassLabel(names=["right", "right-center", "least", "left-center", "left"])
|
92 |
+
|
93 |
+
return datasets.DatasetInfo(
|
94 |
+
description=_DESCRIPTION,
|
95 |
+
features=datasets.Features(features),
|
96 |
+
supervised_keys=("text", "label"),
|
97 |
+
homepage="https://pan.webis.de/semeval19/semeval19-web/",
|
98 |
+
citation=_CITATION,
|
99 |
+
)
|
100 |
+
|
101 |
+
def _split_generators(self, dl_manager):
|
102 |
+
"""Returns SplitGenerators."""
|
103 |
+
urls = {
|
104 |
+
datasets.Split.TRAIN: {
|
105 |
+
"articles_file": _URL_BASE + "articles-training-" + self.config.name + "-20181122.zip?download=1",
|
106 |
+
"labels_file": _URL_BASE + "ground-truth-training-" + self.config.name + "-20181122.zip?download=1",
|
107 |
+
},
|
108 |
+
}
|
109 |
+
if self.config.name == "bypublisher":
|
110 |
+
urls[datasets.Split.VALIDATION] = {
|
111 |
+
"articles_file": _URL_BASE + "articles-training-" + self.config.name + "-20181122.zip?download=1",
|
112 |
+
"labels_file": _URL_BASE + "ground-truth-training-" + self.config.name + "-20181122.zip?download=1",
|
113 |
+
}
|
114 |
+
|
115 |
+
data_dir = {}
|
116 |
+
for key in urls:
|
117 |
+
data_dir[key] = dl_manager.download_and_extract(urls[key])
|
118 |
+
|
119 |
+
splits = []
|
120 |
+
for split in data_dir:
|
121 |
+
for key in data_dir[split]:
|
122 |
+
data_dir[split][key] = os.path.join(data_dir[split][key], os.listdir(data_dir[split][key])[0])
|
123 |
+
splits.append(datasets.SplitGenerator(name=split, gen_kwargs=data_dir[split]))
|
124 |
+
return splits
|
125 |
+
|
126 |
+
def _generate_examples(self, articles_file=None, labels_file=None):
|
127 |
+
"""Yields examples."""
|
128 |
+
labels = {}
|
129 |
+
with open(labels_file, "rb") as f_labels:
|
130 |
+
tree = ET.parse(f_labels)
|
131 |
+
root = tree.getroot()
|
132 |
+
for label in root:
|
133 |
+
article_id = label.attrib["id"]
|
134 |
+
del label.attrib["labeled-by"]
|
135 |
+
labels[article_id] = label.attrib
|
136 |
+
|
137 |
+
with open(articles_file, "rb") as f_articles:
|
138 |
+
tree = ET.parse(f_articles)
|
139 |
+
root = tree.getroot()
|
140 |
+
for idx, article in enumerate(root):
|
141 |
+
example = {}
|
142 |
+
example["title"] = article.attrib["title"]
|
143 |
+
example["published_at"] = article.attrib.get("published-at", "")
|
144 |
+
example["id"] = article.attrib["id"]
|
145 |
+
example = {**example, **labels[example["id"]]}
|
146 |
+
example["hyperpartisan"] = example["hyperpartisan"] == "true"
|
147 |
+
|
148 |
+
example["text"] = ""
|
149 |
+
for child in article.getchildren():
|
150 |
+
example["text"] += ET.tostring(child).decode() + "\n"
|
151 |
+
example["text"] = example["text"].strip()
|
152 |
+
del example["id"]
|
153 |
+
yield idx, example
|