|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, Repository, upload_file |
|
import os |
|
import typer |
|
|
|
def main(language_label): |
|
raw_data = load_dataset("AmazonScience/massive", language_label) |
|
raw_data = raw_data.rename_column("utt", "text") |
|
raw_data = raw_data.rename_column("scenario", "label") |
|
raw_data = raw_data.remove_columns(["locale", "partition", "intent", "annot_utt", |
|
"slot_method", "worker_id", "judgments"]) |
|
|
|
|
|
labels = raw_data["train"].features["label"] |
|
|
|
|
|
repo_name = "amazon_massive_scenario_" + language_label |
|
create_repo(repo_name, organization="SetFit", repo_type="dataset") |
|
|
|
for split, dataset in raw_data.items(): |
|
dataset = dataset.map(lambda x: {"label_text": labels.int2str(x["label"])}, num_proc=4) |
|
dataset.to_json(f"{split}.jsonl") |
|
upload_file(f"{split}.jsonl", path_in_repo=f"{split}.jsonl", repo_id="SetFit/" + repo_name, repo_type="dataset") |
|
os.system(f"rm {split}.jsonl") |
|
|
|
upload_file("create_dataset.py", path_in_repo="create_dataset.py", repo_id="SetFit/" + repo_name, repo_type="dataset") |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
typer.run(main) |
|
|
|
|
|
|