ModelNet_Splats release (Fall 2024) Each zip file contains ply files where each Gaussian is encoded as a vertex with custom vertex attributes. This ply format is commonly used for Gaussian splats and can be viewed using [online viewer](https://playcanvas.com/supersplat/editor/). To open the .ply files, you can use the following python code: ```python from plyfile import PlyData import numpy as np gs_vertex = PlyData.read('ply_path')['vertex'] ### load centroids[x,y,z] - Gaussian centroid x = gs_vertex['x'].astype(np.float32) y = gs_vertex['y'].astype(np.float32) z = gs_vertex['z'].astype(np.float32) centroids = np.stack((x, y, z), axis=-1) # [n, 3] ### load o - opacity opacity = gs_vertex['opacity'].astype(np.float32).reshape(-1, 1) ### load scales[sx, sy, sz] - Scale scale_names = [ p.name for p in gs_vertex.properties if p.name.startswith("scale_") ] scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1])) scales = np.zeros((centroids.shape[0], len(scale_names))) for idx, attr_name in enumerate(scale_names): scales[:, idx] = gs_vertex[attr_name].astype(np.float32) ### load rotation rots[q_0, q_1, q_2, q_3] - Rotation rot_names = [ p.name for p in gs_vertex.properties if p.name.startswith("rot") ] rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1])) rots = np.zeros((centroids.shape[0], len(rot_names))) for idx, attr_name in enumerate(rot_names): rots[:, idx] = gs_vertex[attr_name].astype(np.float32) rots = rots / (np.linalg.norm(rots, axis=1, keepdims=True) + 1e-9) ### load base sh_base[dc_0, dc_1, dc_2] - Spherical harmonic sh_base = np.zeros((centroids.shape[0], 3, 1)) sh_base[:, 0, 0] = gs_vertex['f_dc_0'].astype(np.float32) sh_base[:, 1, 0] = gs_vertex['f_dc_1'].astype(np.float32) sh_base[:, 2, 0] = gs_vertex['f_dc_2'].astype(np.float32) sh_base = sh_base.reshape(-1, 3) ``` Note that more details regarding PSNR, SSIM, LPIPS, FILE_SIZE and Number of Gaussians can be find in [summary](ShapeSplatsV1_Qualitative_Results.json). To showcase the difference of point cloud in spatial distribution, we report Jensen–Shannon Divergence (JSD) and Maximum Mean Discrepancy (MMD) between gaussian splats and ShapeNetCoreV1 point clouds. More details for the pretraining method of ShapeSplats can be find in [Gaussian-MAE](https://unique1i.github.io/ShapeSplat/) Last updated: 2024-09-05