Upload asr_collator_hf.py
Browse files- asr_collator_hf.py +98 -0
asr_collator_hf.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Dict, List, Union
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import random
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class DataCollatorSpeechSeq2SeqWithPadding:
|
9 |
+
processor: Any
|
10 |
+
decoder_start_token_id: int
|
11 |
+
apply_augmentation: bool = False
|
12 |
+
n_fft_choices: List[int] = (400, 800, 1024)
|
13 |
+
hop_length_choices: List[int] = (160, 320, 512)
|
14 |
+
apply_noise_injection: bool = False # Toggle for noise injection
|
15 |
+
noise_profiles: List[str] = ('white', 'pink', 'environmental') # Example noise profiles
|
16 |
+
|
17 |
+
def add_adaptive_noise(self, audio, noise_type='white', base_intensity=0.005):
|
18 |
+
amplitude = audio.abs().mean()
|
19 |
+
noise_intensity = base_intensity * amplitude # Scale noise intensity based on amplitude
|
20 |
+
|
21 |
+
noise = torch.randn_like(audio) * noise_intensity
|
22 |
+
if noise_type == 'pink':
|
23 |
+
noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200)
|
24 |
+
elif noise_type == 'environmental':
|
25 |
+
# Load an example environmental noise file
|
26 |
+
noise, _ = torchaudio.load('environmental_noise.wav')
|
27 |
+
noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * noise_intensity
|
28 |
+
return audio + noise
|
29 |
+
|
30 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
31 |
+
input_features = []
|
32 |
+
labels_list = []
|
33 |
+
dec_input_features = []
|
34 |
+
|
35 |
+
for feature in features:
|
36 |
+
audio = feature["input_features"]
|
37 |
+
if self.apply_augmentation:
|
38 |
+
# Randomly select n_fft and hop_length for augmentation
|
39 |
+
n_fft = random.choice(self.n_fft_choices)
|
40 |
+
hop_length = random.choice(self.hop_length_choices)
|
41 |
+
if self.apply_noise_injection:
|
42 |
+
noise_type = random.choice(self.noise_profiles)
|
43 |
+
audio = self.add_adaptive_noise(audio, noise_type=noise_type)
|
44 |
+
else:
|
45 |
+
# Use default values if augmentation is not applied
|
46 |
+
n_fft = 1024
|
47 |
+
hop_length = 512
|
48 |
+
|
49 |
+
# Apply MelSpectrogram transformation with the selected parameters
|
50 |
+
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
|
51 |
+
sample_rate=16000, # Sample rate is assumed; update if necessary
|
52 |
+
n_fft=n_fft,
|
53 |
+
hop_length=hop_length,
|
54 |
+
n_mels=80
|
55 |
+
)(torch.tensor(audio))
|
56 |
+
|
57 |
+
log_mel_spectrogram = torch.log(mel_spectrogram + 1e-9)
|
58 |
+
input_features.append({"input_features": log_mel_spectrogram})
|
59 |
+
|
60 |
+
label = feature["labels"]
|
61 |
+
label_tokens = [self.processor.tokenizer.bos_token_id] + self.processor.tokenizer.encode(label) + [self.processor.tokenizer.eos_token_id]
|
62 |
+
dec_input_feature = label_tokens[:-1]
|
63 |
+
label = label_tokens[1:]
|
64 |
+
|
65 |
+
labels_list.append({"input_ids": label})
|
66 |
+
dec_input_features.append({"input_ids": dec_input_feature})
|
67 |
+
|
68 |
+
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
69 |
+
labels_batch = self.processor.tokenizer.pad(labels_list, return_tensors="pt")
|
70 |
+
dec_input_batch = self.processor.tokenizer.pad(dec_input_features, return_tensors="pt")
|
71 |
+
|
72 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
73 |
+
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
74 |
+
labels = labels[:, 1:]
|
75 |
+
batch["labels"] = labels
|
76 |
+
|
77 |
+
dec_input_features = dec_input_batch["input_ids"]
|
78 |
+
if (dec_input_features[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
79 |
+
dec_input_features = dec_input_features[:, 1:]
|
80 |
+
batch["dec_input_features"] = dec_input_features
|
81 |
+
|
82 |
+
return batch
|
83 |
+
|
84 |
+
|
85 |
+
# example usage
|
86 |
+
|
87 |
+
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
88 |
+
processor=processor,
|
89 |
+
decoder_start_token_id=model.config.decoder_start_token_id,
|
90 |
+
apply_augmentation=True, # Enable augmentation
|
91 |
+
apply_noise_injection=True # Enable adaptive noise injection
|
92 |
+
)
|
93 |
+
|
94 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=data_collator)
|
95 |
+
|
96 |
+
for batch in dataloader:
|
97 |
+
# Pass the batch to your model
|
98 |
+
outputs = model(batch)
|