Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
task_categories: | |
- question-answering | |
language: | |
- en | |
tags: | |
- TREC-RAG | |
- RAG | |
- MSMARCO | |
- MSMARCOV2.1 | |
- Snowflake | |
- arctic | |
- arctic-embed | |
pretty_name: TREC-RAG-Embedding-Baseline | |
size_categories: | |
- 100M<n<1B | |
configs: | |
- config_name: corpus | |
data_files: | |
- split: train | |
path: corpus/* | |
# Snowflake Arctic Embed L Embeddings for MSMARCO V2.1 for TREC-RAG | |
This dataset contains the embeddings for the MSMARCO-V2.1 dataset which is used as the corpora for [TREC RAG](https://trec-rag.github.io/) | |
All embeddings are created using [Snowflake's Arctic Embed L](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) and are intended to serve as a simple baseline for dense retrieval-based methods. | |
## Retrieval Performance | |
Retrieval performance for the TREC DL21-23, MSMARCOV2-Dev and Raggy Queries can be found below with BM25 as a baseline. For both systems retrieval is at the segment level and Doc Score = Max (passage score). | |
Retrieval is done via dot product and happens in BF16. | |
### NDCG@10 | |
| Dataset | BM25 | Snowflake Arctic Embed L | | |
|---|---|---| | |
| Deep Learning 2021 | 0.5778 | 0.70682 | | |
| Deep Learning 2022 | 0.3576 | 0.5444 | | |
| Deep Learning 2023 | 0.3356 | 0.47372 | | |
| msmarcov2-dev | N/A | 0.35844 | | |
| msmarcov2-dev2 | N/A | 0.35821 | | |
| Raggy Queries | 0.4227 | 0.57759 | | |
### Recall@100 | |
| Dataset | BM25 | Snowflake Arctic Embed L | | |
|---|---|---| | |
| Deep Learning 2021 | 0.3811 | 0.41361 | | |
| Deep Learning 2022 | 0.233 | 0.31351 | | |
| Deep Learning 2023 | 0.3049 | 0.34793 | | |
| msmarcov2-dev | 0.6683 | 0.85131 | | |
| msmarcov2-dev2 | 0.6771 | 0.84767 | | |
| Raggy Queries | 0.2807 | 0.36228 | | |
### Recall@1000 | |
| Dataset | BM25 | Snowflake Arctic Embed L | | |
|---|---|---| | |
| Deep Learning 2021 | 0.7115 | 0.7193 | | |
| Deep Learning 2022 | 0.479 | 0.54566 | | |
| Deep Learning 2023 | 0.5852 | 0.59577 | | |
| msmarcov2-dev | 0.8528 | 0.93966 | | |
| msmarcov2-dev2 | 0.8577 | 0.93947 | | |
| Raggy Queries | 0.5745 | 0.63092 | | |
## Loading the dataset | |
### Loading the document embeddings | |
You can either load the dataset like this: | |
```python | |
from datasets import load_dataset | |
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train") | |
``` | |
Or you can also stream it without downloading it before: | |
```python | |
from datasets import load_dataset | |
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True) | |
for doc in docs: | |
doc_id = j['docid'] | |
url = doc['url'] | |
text = doc['text'] | |
emb = doc['embedding'] | |
``` | |
Note, The full dataset corpus is ~ 620GB so it will take a while to download and may not fit on some devices/ | |
## Search | |
A full search example (on the first 1,000 paragraphs): | |
```python | |
from datasets import load_dataset | |
import torch | |
from transformers import AutoModel, AutoTokenizer | |
import numpy as np | |
top_k = 100 | |
docs_stream = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l",split="train", streaming=True) | |
docs = [] | |
doc_embeddings = [] | |
for doc in docs_stream: | |
docs.append(doc) | |
doc_embeddings.append(doc['embedding']) | |
if len(docs) >= top_k: | |
break | |
doc_embeddings = np.asarray(doc_embeddings) | |
tokenizer = AutoTokenizer.from_pretrained('Snowflake/snowflake-arctic-embed-l') | |
model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-l', add_pooling_layer=False) | |
model.eval() | |
query_prefix = 'Represent this sentence for searching relevant passages: ' | |
queries = ['how do you clean smoke off walls'] | |
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries] | |
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512) | |
# Compute token embeddings | |
with torch.no_grad(): | |
query_embeddings = model(**query_tokens)[0][:, 0] | |
# normalize embeddings | |
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1) | |
doc_embeddings = torch.nn.functional.normalize(doc_embeddings, p=2, dim=1) | |
# Compute dot score between query embedding and document embeddings | |
dot_scores = np.matmul(query_embeddings, doc_embeddings.transpose())[0] | |
top_k_hits = np.argpartition(dot_scores, -top_k)[-top_k:].tolist() | |
# Sort top_k_hits by dot score | |
top_k_hits.sort(key=lambda x: dot_scores[x], reverse=True) | |
# Print results | |
print("Query:", queries[0]) | |
for doc_id in top_k_hits: | |
print(docs[doc_id]['doc_id']) | |
print(docs[doc_id]['text']) | |
print(docs[doc_id]['url'], "\n") | |
``` |